Bilateral BBSRC-NSF/BIO: Excitocell: A rewired eukaryotic cell model for the analysis and design of cellular morphogenesis
双边 BBSRC-NSF/BIO:Excitocell:用于分析和设计细胞形态发生的重新连接的真核细胞模型
基本信息
- 批准号:1614190
- 负责人:
- 金额:$ 37.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Virtually every important thing cells and tissues do involve changes in cell morphology: cell division, cell migration, and wound healing all involve profound changes in cell shape. These shape changes are powered by the outer layer of the cell, which is called the "cortex". The cortex contains a meshwork of fibrous proteins that can contract, protrude, and slide. These movements provide the basis of cell shape changes. The control of this fibrous network is the domain of a protein called Rho. Rho is somehow activated in distinct patterns, each of which corresponds to a different cell shape change. Thus, in order to understand and control processes such as cell division, cell migration and wound healing, it is essential to learn how to understand and control patterns of Rho activation. In this collaborative project, investigators from the US and the UK use synthetic cell biology and mathematical modeling to test mechanisms underlying cortical pattern formation. This project will provide research opportunities for interdisciplinary training at the interface between quantitative cell biology and mathematical modeling for undergraduates, graduate students, and postdocs. The project also offers embedded research opportunities for high-school teachers as well as topic-specific K-12 and public outreach activities. Previous studies by the PIs demonstrated that cells can support sustained waves of dynamically-coupled Rho activity and actin assembly, and mathematical modeling followed by experimental verification revealed that cortical wave propagation is based on Rho autoactivation and actin-mediated Rho inactivation. This constitutes the basis of an "excitable" system, a family of well-established theoretical models with few previously-known cellular manifestations. This project will deduce and experimentally validate a minimal molecular mechanism and basic design elements required for cortical excitability. To achieve the goals of this project, a novel semi-synthetic platform for replicating complex cell behaviors using simple macromolecular parts will be employed, enabling manipulation of the molecular network at escalating complexity instead of by dissecting a complex physiological network. The project will couple computational modeling of excitable dynamics to live-cell imaging in whole cells and in a new ex vivo model of cortical dynamics. First, excitable dynamics will be reconstituted in resting, non-mitotic cells (oocytes of frogs and echinoderms) using natural regulators and their mutants, followed by their replacement with synthetic equivalents. Second, a quantifiable ex vivo model will be developed (using frog oocyte or egg extracts and supported lipid bilayers) that permits precise control of system composition in a simplified context. Third, to achieve on-demand control of cortical pattern formation, an optogenetic approach in animal oocytes will be used to explore the repertoire of both natural and synthetic cortical pattern formation. Iterative experimentation and computational modeling will be employed throughout the project to 1) interpret biological data, 2) express candidate mechanisms in the form of mathematical models, 3) generate predictions, and 4) test those predictions experimentally.
事实上,细胞和组织所做的每一件重要的事情都涉及细胞形态的变化:细胞分裂、细胞迁移和伤口愈合都涉及细胞形态的深刻变化。这些形状的变化是由被称为“皮层”的细胞外层驱动的。皮层含有纤维蛋白网,可以收缩、突出和滑动。这些运动为细胞形状的变化提供了基础。控制这种纤维网络的是一种叫做Rho的蛋白质结构域。Rho以不同的模式被激活,每一种模式对应着不同的细胞形状变化。因此,为了理解和控制细胞分裂、细胞迁移和伤口愈合等过程,了解如何理解和控制Rho激活模式至关重要。在这个合作项目中,来自美国和英国的研究人员使用合成细胞生物学和数学模型来测试皮层模式形成的机制。该项目将为本科生、研究生和博士后提供定量细胞生物学和数学建模之间的跨学科培训的研究机会。该项目还为高中教师提供嵌入式研究机会,以及特定主题的K-12和公共宣传活动。pi先前的研究表明,细胞可以支持动态耦合Rho活性和肌动蛋白组装的持续波,数学模型和实验验证表明,皮层波的传播是基于Rho自激活和肌动蛋白介导的Rho失活。这构成了一个“可兴奋”系统的基础,这是一个已经建立的理论模型家族,很少有以前已知的细胞表现。本项目将推导和实验验证一个最小的分子机制和基本设计元素所需的皮质兴奋性。为了实现该项目的目标,将采用一种新的半合成平台,利用简单的大分子部分复制复杂的细胞行为,使分子网络的操作变得更加复杂,而不是通过解剖复杂的生理网络。该项目将把可兴奋动力学的计算建模与全细胞活细胞成像和新的皮质动力学离体模型结合起来。首先,使用自然调节剂及其突变体在静止的非有丝分裂细胞(青蛙和棘皮动物的卵母细胞)中重建可兴奋的动力学,然后用合成的等量调节剂代替。其次,将开发一个可量化的离体模型(使用青蛙卵母细胞或卵提取物和支持脂质双层),以便在简化的背景下精确控制系统组成。第三,为了实现对皮质图案形成的按需控制,将使用动物卵母细胞的光遗传学方法来探索自然和合成皮质图案形成的全部功能。迭代实验和计算建模将在整个项目中使用,以1)解释生物数据,2)以数学模型的形式表达候选机制,3)生成预测,以及4)通过实验测试这些预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Bement其他文献
William Bement的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Bement', 18)}}的其他基金
BBSRC-NSF/BIO: Synthetic Control of Pattern Formation and Morphogenesis in a Purposefully Rewired Vertebrate Cell
BBSRC-NSF/BIO:有目的地重新连接的脊椎动物细胞中模式形成和形态发生的综合控制
- 批准号:
2132606 - 财政年份:2021
- 资助金额:
$ 37.6万 - 项目类别:
Standard Grant
Collaborative Research: Cytokinetic Furrow Specification in Sea Urchin Embryos
合作研究:海胆胚胎的细胞动力学沟规范
- 批准号:
0917916 - 财政年份:2009
- 资助金额:
$ 37.6万 - 项目类别:
Standard Grant
Chemical and Physical Control of Ectopic Contractile Rings
异位收缩环的化学和物理控制
- 批准号:
0131286 - 财政年份:2002
- 资助金额:
$ 37.6万 - 项目类别:
Continuing Grant
Functional and Molecular Regulation of Actomyosin by Microtubules
微管对肌动球蛋白的功能和分子调节
- 批准号:
9630860 - 财政年份:1996
- 资助金额:
$ 37.6万 - 项目类别:
Continuing Grant
相似海外基金
Bilateral BBSRC-NSF/BIO: CIBR: Structural modeling of interactome to assess phenotypic effects of genetic variation.
双边 BBSRC-NSF/BIO:CIBR:相互作用组的结构模型,用于评估遗传变异的表型效应。
- 批准号:
1917263 - 财政年份:2019
- 资助金额:
$ 37.6万 - 项目类别:
Standard Grant
Bilateral BBSRC-NSF/BIO: Bayesian Quantitative Proteomics
双边 BBSRC-NSF/BIO:贝叶斯定量蛋白质组学
- 批准号:
2016487 - 财政年份:2019
- 资助金额:
$ 37.6万 - 项目类别:
Standard Grant
Bilateral BBSRC-NSF/BIO Collaborative Research: ABI Development: A Critical Assessment of Protein Function Annotation
BBSRC-NSF/BIO 双边合作研究:ABI 开发:蛋白质功能注释的批判性评估
- 批准号:
1854685 - 财政年份:2018
- 资助金额:
$ 37.6万 - 项目类别:
Standard Grant
Bilateral BBSRC-NSF/BIO: Asymmetric division and the temporal dynamics of cell motility
双边 BBSRC-NSF/BIO:不对称分裂和细胞运动的时间动态
- 批准号:
1758081 - 财政年份:2017
- 资助金额:
$ 37.6万 - 项目类别:
Continuing Grant
Collaborative Research: Bilateral BBSRC-NSF/BIO: Synthetic Biology for Lignin Utilization
合作研究:双边 BBSRC-NSF/BIO:木质素利用的合成生物学
- 批准号:
1614953 - 财政年份:2016
- 资助金额:
$ 37.6万 - 项目类别:
Standard Grant
Collaborative Research: Bilateral BBSRC-NSF/BIO: Regulation of plant stomatal aperture by SAUR (Small Auxin Up RNA) proteins
合作研究:双边 BBSRC-NSF/BIO:SAUR(小生长素 Up RNA)蛋白调节植物气孔孔径
- 批准号:
1613809 - 财政年份:2016
- 资助金额:
$ 37.6万 - 项目类别:
Continuing Grant
Bilateral BBSRC-NSF/BIO: Causal modeling of T cell signaling in time and space
双边 BBSRC-NSF/BIO:T 细胞信号传导在时间和空间上的因果模型
- 批准号:
1616492 - 财政年份:2016
- 资助金额:
$ 37.6万 - 项目类别:
Standard Grant
Bilateral NSF/BIO-BBSRC- Remodelling Replication Roadblocks: Regulatory Systems that Integrate DNA Replication, Recombination and Protein Modification
双边 NSF/BIO-BBSRC-重塑复制障碍:整合 DNA 复制、重组和蛋白质修饰的监管系统
- 批准号:
1642283 - 财政年份:2016
- 资助金额:
$ 37.6万 - 项目类别:
Standard Grant
Bilateral NSF/BIO-BBSRC: Synthetic DNA Nanopores for Selective Transmembrane Transport
双边 NSF/BIO-BBSRC:用于选择性跨膜运输的合成 DNA 纳米孔
- 批准号:
1644745 - 财政年份:2016
- 资助金额:
$ 37.6万 - 项目类别:
Standard Grant
Bilateral NSF/BIO-BBSRC: Engineering Tunable Portal Hybrid Nanopores for High-Resolution Sequence Mapping
双边 NSF/BIO-BBSRC:工程可调谐门户混合纳米孔用于高分辨率序列图谱
- 批准号:
1645671 - 财政年份:2016
- 资助金额:
$ 37.6万 - 项目类别:
Standard Grant