BBSRC-NSF/BIO: Synthetic Control of Pattern Formation and Morphogenesis in a Purposefully Rewired Vertebrate Cell

BBSRC-NSF/BIO:有目的地重新连接的脊椎动物细胞中模式形成和形态发生的综合控制

基本信息

  • 批准号:
    2132606
  • 负责人:
  • 金额:
    $ 83.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

The goal of this project is to synthetically (artificially) control the behavior of the cell "cortex"—the outermost layer of the cell. It is the cortex that normally powers many fundamental biological processes, both within single cells, and in tissues and organs. Completion of the project will result in four important research outcomes: first, it will test current ideas about how living systems execute such processes as cell division, cell movement, and cell shape change. Second, it will provide new tools and technologies that permit manipulation of cell behavior in living organisms. Third, it will provide the means to promote new, and potentially beneficial cell behaviors. Fourth, it will result in the development of new computational approaches for the analysis and understanding of complex cell behaviors. Successful completion of the project will also lead to several important educational and training outcomes. This project, which is a collaboration between researchers at the University of Wisconsin-Madison (US) and the University of Edinburgh (UK), will support the training of two postdoctoral researchers and one graduate student in cell, molecular and computational biology, further preparing them for careers in science. Moreover, an additional four-six undergraduate students will be trained in cell and molecular biology, preparing them for careers in science or medicine. Finally, four under-represented and financially underresourced high school students will be trained in cell and molecular biology for two consecutive summers and provided with additional training on how to succeed in college. The training is anticipated to provide these students with the analytical and quantitative skills needed to excel in science, technology, engineering, and medicine related majors and, presumably, eventual careers in these areas.The cell cortex is responsible for responding to a variety of internal and external signals with the appropriate mechanical behavior. Such behaviors include cell division, cell locomotion and short or long-term cell shape changes. This team and others recently discovered a dynamical process—cortical excitability—that a variety of cell types harness to drive distinct mechanical behaviors. Cortical excitability is outwardly manifest as propagating cortical waves of actin assembly and complementary waves of the various macromolecules that control actin assembly. Cortical excitability is itself controlled by coupled fast positive feedback and delayed negative feedback. We will develop the means to synthetically induce cortical excitability in cells that do not normally display it, namely, frog oocytes, and employ high-resolution live cell imaging to capture the detailed features of excitability. The induction will be based on synthetic protein constructs engineered to produce either fast positive feedback or delayed negative feedback. These constructs will be capable of generating different cortical excitability regimes either globally (ie throughout the entire cortex) or locally (ie in distinct regions of or patterns in the cortex). By combining different synthetic constructs, we will drive simple cell shape changes (ie furrowing) or complex cell shape changes (ie gastrulation), allowing us to test basic ideas about cell shape control. In addition, by iteratively combining experiments with computational modeling of the results, it will be possible to develop both a quantitative, mechanistic understanding of processes such as cell division and morphogenesis. This research will be of interest to those working in a broad variety of scientific disciplines, ranging from cell and developmental biology to computational modeling, to physics. Moreover, because the data generated will be extraordinarily rich in information, we anticipate that it will serve as a resource for many other researchers interested in dynamical behavior.This collaborative US/UK project is supported by the US National Science Foundation and the UK Biotechnology and Biological Sciences Research Council.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的目标是综合(人工)控制细胞“皮层”(细胞的最外层)的行为。皮质通常为许多基本的生物过程提供动力,无论是在单细胞内,还是在组织和器官中。该项目的完成将产生四个重要的研究成果:首先,它将测试当前关于生命系统如何执行细胞分裂,细胞运动和细胞形状变化等过程的想法。其次,它将提供新的工具和技术,允许操纵活生物体中的细胞行为。第三,它将提供促进新的、潜在有益的细胞行为的手段。第四,它将导致新的计算方法的发展,用于分析和理解复杂的细胞行为。该项目的成功完成还将带来若干重要的教育和培训成果。该项目是威斯康星大学麦迪逊分校(美国)和爱丁堡大学(英国)研究人员之间的合作,将支持两名博士后研究人员和一名细胞,分子和计算生物学研究生的培训,进一步为他们的科学生涯做好准备。此外,另有4 - 6名本科生将接受细胞和分子生物学培训,为他们在科学或医学领域的职业生涯做好准备。最后,四名代表性不足和财政资源不足的高中生将连续两个夏天接受细胞和分子生物学培训,并就如何在大学取得成功提供额外的培训。该培训预计将为这些学生提供所需的分析和定量技能,以在科学,技术,工程和医学相关专业中脱颖而出,并可能最终在这些领域的职业生涯。细胞皮层负责以适当的机械行为响应各种内部和外部信号。这些行为包括细胞分裂,细胞运动和短期或长期的细胞形状变化。这个团队和其他人最近发现了一个动力学过程皮层兴奋性,各种类型的细胞利用它来驱动不同的机械行为。皮质兴奋性向外表现为肌动蛋白组装的皮质波传播和控制肌动蛋白组装的各种大分子的互补波。皮层兴奋性本身受耦合的快速正反馈和延迟负反馈控制。我们将开发的手段来综合诱导皮质兴奋性的细胞,通常不显示它,即青蛙卵母细胞,并采用高分辨率活细胞成像捕捉兴奋性的详细特征。诱导将基于经工程化以产生快速正反馈或延迟负反馈的合成蛋白质构建体。这些结构将能够产生不同的皮质兴奋性制度,无论是全球(即整个皮层)或局部(即在不同的区域或模式的皮层)。通过结合不同的合成结构,我们将驱动简单的细胞形状变化(即开沟)或复杂的细胞形状变化(即原肠胚形成),使我们能够测试关于细胞形状控制的基本想法。此外,通过迭代地将实验与结果的计算建模相结合,将有可能对细胞分裂和形态发生等过程进行定量的机械理解。这项研究将对那些在各种科学学科工作的人感兴趣,从细胞和发育生物学到计算建模到物理学。此外,由于生成的数据将包含非常丰富的信息,我们预计,它将作为一个资源,为许多其他研究人员感兴趣的动力学行为。英国项目由美国国家科学基金会和英国生物技术和生物科学研究理事会支持。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Bement其他文献

William Bement的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Bement', 18)}}的其他基金

Bilateral BBSRC-NSF/BIO: Excitocell: A rewired eukaryotic cell model for the analysis and design of cellular morphogenesis
双边 BBSRC-NSF/BIO:Excitocell:用于分析和设计细胞形态发生的重新连接的真核细胞模型
  • 批准号:
    1614190
  • 财政年份:
    2016
  • 资助金额:
    $ 83.56万
  • 项目类别:
    Standard Grant
Collaborative Research: Cytokinetic Furrow Specification in Sea Urchin Embryos
合作研究:海胆胚胎的细胞动力学沟规范
  • 批准号:
    0917916
  • 财政年份:
    2009
  • 资助金额:
    $ 83.56万
  • 项目类别:
    Standard Grant
Chemical and Physical Control of Ectopic Contractile Rings
异位收缩环的化学和物理控制
  • 批准号:
    0131286
  • 财政年份:
    2002
  • 资助金额:
    $ 83.56万
  • 项目类别:
    Continuing Grant
Functional and Molecular Regulation of Actomyosin by Microtubules
微管对肌动球蛋白的功能和分子调节
  • 批准号:
    9630860
  • 财政年份:
    1996
  • 资助金额:
    $ 83.56万
  • 项目类别:
    Continuing Grant

相似国自然基金

SYNJ1蛋白片段通过促进突触蛋白NSF聚集在帕金森病发生中的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
NSF蛋白亚硝基化修饰所介导的GluA2 containing-AMPA受体膜稳定性在卒中后抑郁中的作用及机制研究
  • 批准号:
    82071300
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
参加中美(NSFC-NSF)生物多样性项目评审会
  • 批准号:
    31981220281
  • 批准年份:
    2019
  • 资助金额:
    2.3 万元
  • 项目类别:
    国际(地区)合作与交流项目
参加中美(NSFC-NSF)生物多样性项目评审会
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    2 万元
  • 项目类别:
    国际(地区)合作与交流项目
中美(NSFC-NSF)EEID联合评审会
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    2.6 万元
  • 项目类别:
    国际(地区)合作与交流项目
中美(NSFC-NSF)EEID联合评审会
  • 批准号:
    81981220037
  • 批准年份:
    2019
  • 资助金额:
    2.1 万元
  • 项目类别:
    国际(地区)合作与交流项目
中美(NSFC-NSF)EEID联合评审会
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    1.2 万元
  • 项目类别:
    国际(地区)合作与交流项目
Mon1b 协同NSF调控早期内吞体膜融合的机制研究
  • 批准号:
    31671397
  • 批准年份:
    2016
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目

相似海外基金

BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y000455/1
  • 财政年份:
    2024
  • 资助金额:
    $ 83.56万
  • 项目类别:
    Research Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y001117/1
  • 财政年份:
    2024
  • 资助金额:
    $ 83.56万
  • 项目类别:
    Research Grant
22-BBSRC/NSF-BIO Building synthetic regulatory units to understand the complexity of mammalian gene expression
22-BBSRC/NSF-BIO 构建合成调控单元以了解哺乳动物基因表达的复杂性
  • 批准号:
    BB/Y008898/1
  • 财政年份:
    2024
  • 资助金额:
    $ 83.56万
  • 项目类别:
    Research Grant
20-BBSRC/NSF-BIO Regulatory control of innate immune response in marine invertebrates
20-BBSRC/NSF-BIO 海洋无脊椎动物先天免疫反应的调节控制
  • 批准号:
    BB/W017865/1
  • 财政年份:
    2024
  • 资助金额:
    $ 83.56万
  • 项目类别:
    Research Grant
22-BBSRC/NSF-BIO - Interpretable & Noise-robust Machine Learning for Neurophysiology
22-BBSRC/NSF-BIO - 可解释
  • 批准号:
    BB/Y008758/1
  • 财政年份:
    2024
  • 资助金额:
    $ 83.56万
  • 项目类别:
    Research Grant
22-BBSRC/NSF-BIO: Community-dependent CRISPR-cas evolution and robust community function
22-BBSRC/NSF-BIO:群落依赖性 CRISPR-cas 进化和强大的群落功能
  • 批准号:
    BB/Y008774/1
  • 财政年份:
    2024
  • 资助金额:
    $ 83.56万
  • 项目类别:
    Research Grant
UKRI/BBSRC-NSF/BIO: Interpretable and Noise-Robust Machine Learning for Neurophysiology
UKRI/BBSRC-NSF/BIO:用于神经生理学的可解释且抗噪声的机器学习
  • 批准号:
    2321840
  • 财政年份:
    2023
  • 资助金额:
    $ 83.56万
  • 项目类别:
    Continuing Grant
21-BBSRC/NSF-BIO: Developing large serine integrases as tools for constructing and manipulating synthetic replicons.
21-BBSRC/NSF-BIO:开发大型丝氨酸整合酶作为构建和操作合成复制子的工具。
  • 批准号:
    BB/X012085/1
  • 财政年份:
    2023
  • 资助金额:
    $ 83.56万
  • 项目类别:
    Research Grant
UKRI/BBSRC-NSF/BIO Determining the Roles of Fusarium Effector Proteases in Plant Pathogenesis
UKRI/BBSRC-NSF/BIO 确定镰刀菌效应蛋白酶在植物发病机制中的作用
  • 批准号:
    BB/X012131/1
  • 财政年份:
    2023
  • 资助金额:
    $ 83.56万
  • 项目类别:
    Research Grant
BBSRC-NSF/BIO. Globally harmonized re-analysis of Data Independent Acquisition (DIA) proteomics datasets enables the creation of new resources
BBSRC-NSF/BIO。
  • 批准号:
    BB/X002020/1
  • 财政年份:
    2023
  • 资助金额:
    $ 83.56万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了