Singularity and Small-Scale Formation for Model Equations of Fluid Dynamics
流体动力学模型方程的奇异性和小尺度形成
基本信息
- 批准号:1614797
- 负责人:
- 金额:$ 13.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Euler equations are a system of differential equations that describe the motions of fluids like water and air. Together with the Navier-Stokes equations, which take into account the effect of friction in fluid motion, they are applied in a wide variety of natural and technical situations, for example when modeling the lift of an aircraft wing or the circulation of water in the oceans. Although these equations were first conceived more than two hundred years ago, some of their fundamental mathematical properties are still not well understood. The difficulty lies in the fact that all the equations describing fluids show a strong tendency for "small scale formation." This is seen, for example, in the formation of very small vortices and irregularities in the flow that ultimately cause turbulence. In this research project, the investigator and collaborators study the formation of irregularities in fluid flow from a mathematical point of view. The goal is to give a detailed analysis of the mechanisms that lead to small-scale formation.The projects concern detailed research on geometric singularity formation for certain model equations of fluid dynamics. These model equations are inspired by the Euler equations for three-dimensional, incompressible fluid flow. The overall goal is to gain a better understanding of the complex mechanisms leading to singularity formation in finite time, and also the exact growth rates of quantities like the vorticity and vorticity gradient. The main difficulty comes from the nonlocal and nonlinear nature of the equations. In one of the projects, the investigator considers the hyperbolic flow scenario for the modified surface quasi-geostrophic and Boussinesq equations in two dimensions. The goal is to obtain insight into the hyperbolic flow scenario, which is thought to be a good candidate to ultimately create finite-time blowup for the three-dimensional Euler equations. In the remaining projects, the investigator considers one-dimensional model equations, for which the goal is to describe the singularity formation in as much detail as possible. An important overall theme consists in stabilizing the blowup scenario up to the singular time using barrier functions and a priori estimates that take detailed information about the structure of the solution into account.
欧拉方程是一组微分方程,描述了水和空气等流体的运动。与纳维尔-斯托克斯方程一起,考虑到流体运动中摩擦的影响,它们被应用于各种自然和技术情况,例如在模拟飞机机翼的升力或海洋中的水循环时。虽然这些方程在两百多年前就被首次提出,但它们的一些基本数学性质仍然没有得到很好的理解。困难在于所有描述流体的方程都表现出强烈的“小尺度形成”倾向。“例如,在流动中形成非常小的涡流和不规则性,最终导致湍流。在这个研究项目中,研究者和合作者从数学的角度研究流体流动中不规则性的形成。目标是详细分析导致小规模形成的机制,项目涉及详细研究某些流体动力学模型方程的几何奇异性形成。这些模型方程的灵感来自于三维不可压缩流体流动的欧拉方程。总体目标是更好地理解导致有限时间内奇点形成的复杂机制,以及涡度和涡度梯度等量的确切增长率。主要的困难来自于非局部和非线性方程的性质。在其中一个项目中,研究人员认为双曲流动的情况下,修改后的表面准地转和Boussinesq方程在两个维度。我们的目标是深入了解双曲流动的情况下,这被认为是一个很好的候选人,最终创建有限时间爆破的三维欧拉方程。在剩下的项目中,研究人员考虑一维模型方程,其目标是尽可能详细地描述奇点的形成。一个重要的总体主题包括稳定的爆破方案的奇异时间使用障碍函数和先验估计,考虑到解决方案的结构的详细信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Duy Nguyen Vu Hoang其他文献
Duy Nguyen Vu Hoang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Duy Nguyen Vu Hoang', 18)}}的其他基金
Singularity and Small-Scale Formation for Model Equations of Fluid Dynamics
流体动力学模型方程的奇异性和小尺度形成
- 批准号:
1810687 - 财政年份:2017
- 资助金额:
$ 13.49万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 13.49万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 13.49万 - 项目类别:
Standard Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
$ 13.49万 - 项目类别:
Standard Grant
Scientific Information and Sustainable Farm Production: Evidence from Field Experiments with Soil Tests for Small-scale Farms in Vietnam
科学信息和可持续农业生产:越南小型农场土壤测试现场实验的证据
- 批准号:
24K16354 - 财政年份:2024
- 资助金额:
$ 13.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Atomic scale reactivity of small islands of a bimetallic alloy on ceria to small molecules investigated by ultrahigh resolution atomic force microscopy
通过超高分辨率原子力显微镜研究二氧化铈上双金属合金小岛对小分子的原子尺度反应性
- 批准号:
24K01350 - 财政年份:2024
- 资助金额:
$ 13.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Resilience, Experimentation, and Collapse in Small-Scale Fisheries
合作研究:小规模渔业的恢复力、实验和崩溃
- 批准号:
2312166 - 财政年份:2024
- 资助金额:
$ 13.49万 - 项目类别:
Standard Grant
Collaborative Research: Resilience, Experimentation, and Collapse in Small-Scale Fisheries
合作研究:小规模渔业的恢复力、实验和崩溃
- 批准号:
2312167 - 财政年份:2024
- 资助金额:
$ 13.49万 - 项目类别:
Standard Grant
CIF: Small: Theory and Algorithms for Efficient and Large-Scale Monte Carlo Tree Search
CIF:小型:高效大规模蒙特卡罗树搜索的理论和算法
- 批准号:
2327013 - 财政年份:2023
- 资助金额:
$ 13.49万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
- 批准号:
2412329 - 财政年份:2023
- 资助金额:
$ 13.49万 - 项目类别:
Standard Grant
Collaborative Research: The impact of irregular small-scale topography on large-scale circulation patterns
合作研究:不规则小尺度地形对大尺度环流格局的影响
- 批准号:
2241626 - 财政年份:2023
- 资助金额:
$ 13.49万 - 项目类别:
Standard Grant