Geometric Topology and Manifolds

几何拓扑和流形

基本信息

  • 批准号:
    1615056
  • 负责人:
  • 金额:
    $ 22.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Award: DMS 1615056, Principal Investigator: James F. DavisMajor branches of theoretical mathematics include topology, algebra, geometry, analysis, and combinatorics. This project weaves these various threads together. The major focus is the study of manifolds, which are sets of points locally modeled on Euclidean space. Sample manifolds in dimension 2 are given by a plane, the surface of a torus, and the surface of a sphere. However manifolds exist in all dimensions, and their consideration leads to a rich variety of examples and uses a rich variety of tools. This project focuses on manifolds which are analytically simple but topologically complex. The connection between the disparate fields mentioned above means that one can use topology as a oracle, producing interesting questions, examples, and research in other areas of theoretical mathematics. Manifold theory connects with most areas of mathematics, as well as physical phenomena such as cosmology, string theory, and classical and quantum mechanics.The principal investigator proposes six projects. The first is the bordism of L2-acyclic manifolds. This connects with low-dimensional topology (knot concordance), with algebra (Hilberts 17th problem and the Witt group of function fields), with high-dimensional topology (a new form of surgery theory), and analysis (amenable groups and L2-betti numbers). The second gives a systematic approach to topological equivariant rigidity, using tools from surgery theory, stratified spaces, algebraic K-and L-theory, and the Farrell-Jones Conjecture. The third is to study and apply combinatorial characteristic classes based on oriented matroids. The fourth is the Nielsen Realization question, where progress in now possible due to the Farrell-Jones conjecture and the understanding of manifolds whose fundamental groups are infinite with torsion. The fifth is foundational work in algebraic L-theory, in particular the computation of the L-theory of the polynomial ring in n variables with integral coefficients and the group ring of a free product of groups. The sixth is to study Brieskorn manifolds produced by algebraic geometry, and, in turn, to use algebraic geometry to study these manifolds. These problems are all interrelated with each other; the basic theme being classification of manifolds, their bundles, and their symmetries.
奖项:DMS 1615056,主要研究者:James F.理论数学的主要分支包括拓扑学、代数学、几何学、分析学和组合学。 这个项目将这些不同的线索编织在一起。 主要的焦点是流形的研究,流形是在欧几里得空间上局部建模的点的集合。 二维流形的样本由平面、环面的表面和球面给出。 然而流形存在于所有维度中,对它们的考虑导致了丰富多样的例子,并使用了丰富多样的工具。 这个项目的重点是流形,这是分析简单,但拓扑复杂。上面提到的不同领域之间的联系意味着人们可以使用拓扑学作为神谕,在理论数学的其他领域产生有趣的问题,例子和研究。流形理论与大多数数学领域以及宇宙学、弦理论、经典力学和量子力学等物理现象都有联系。首席研究员提出了六个项目。 第一个是L2-无圈流形的边数。 这与低维拓扑(结一致性),代数(希尔伯特第17问题和函数域的维特群),高维拓扑(一种新形式的外科手术理论)和分析(顺从群和L2-贝蒂数)有关。第二个给出了一个系统的方法拓扑等变刚性,使用工具从外科手术理论,分层空间,代数K-和L-理论,和法雷尔-琼斯猜想。 三是研究和应用基于有向拟阵的组合特征类。 第四个是尼尔森实现问题,由于Farrell-Jones猜想和对基本群具有无穷挠的流形的理解,现在可能取得进展。 第五是基础性的工作,代数L-理论,特别是计算的L-理论的多项式环在n个变量的整数系数和群环的自由产品的群体。 第六是研究由代数几何产生的Brieskorn流形,反过来,利用代数几何来研究这些流形。 这些问题都是相互关联的;基本的主题是分类的流形,他们的丛,和他们的对称性。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An almost flat manifold with a cyclic or quaternionic holonomy group bounds
  • DOI:
    10.4310/jdg/1463404119
  • 发表时间:
    2015-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    James F. Davis;F. Fang
  • 通讯作者:
    James F. Davis;F. Fang
Any finite group acts freely and homologically trivially on a product of spheres
任何有限群都可以自由且同调地作用于球体的乘积
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Davis其他文献

NITRATION: A SELECTIVE ELECTROCHEMICAL LABEL FOR THE DETERMINATION OF ACTIVATED AROMATICS
硝化:用于测定活化芳烃的选择性电化学标记
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. L. Beckett;N. Lawrence;James Davis;R. Compton
  • 通讯作者:
    R. Compton
分子間水素結合ダイナミクスを利用した液晶性強誘電体の設計
利用分子间氢键动力学设计液晶铁电材料
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Douglas R. MacFarlane;Naoki Tachikawa;Maria Forsyth;Jennifer M. Pringle;Patrick Howlett;Gloria D. Elliott;James Davis;Masayoshi Watanabe;Patrice Simon;C. Austen Angell;芥川智行
  • 通讯作者:
    芥川智行
A clinical assessment of direct electrochemical urate measurements.
直接电化学尿酸盐测量的临床评估。
Incidence of hypophosphataemia in patients on parenteral nutrition
肠外营养患者低磷血症的发生率
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marvin;C. May;C. Livingstone;James Davis
  • 通讯作者:
    James Davis
The discovery of an orally efficacious positive allosteric modulator of the calcium sensing receptor containing a dibenzylamine core.
发现一种口服有效的含有二苄胺核心的钙传感受体正变构调节剂。
  • DOI:
    10.1016/j.bmcl.2010.07.060
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    P. Harrington;D. J. St Jean;Jeff Clarine;T. Coulter;Michael Croghan;Adam J Davenport;James Davis;C. Ghiron;J. Hutchinson;M. Kelly;Fred D Lott;J. Lu;David A. Martin;S. Morony;Steve F. Poon;Elena Portero;J. Reagan;K. Regal;A. Tasker;Minghan Wang;Yuhua Yang;Guomin Yao;Q. Zeng;C. Henley;C. Fotsch
  • 通讯作者:
    C. Fotsch

James Davis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Davis', 18)}}的其他基金

Workshops on Smart Manufacturing with Open and Scaled Data Sharing in Semiconductor and Microelectronics Manufacturing; Virtual and In-Person; Washington, DC; October/November 2023
半导体和微电子制造中开放和规模化数据共享的智能制造研讨会;
  • 批准号:
    2334590
  • 财政年份:
    2023
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Standard Grant
MICA: Stomasense: A New Route to the Proactive Detection and Management of Leaks within Ostomy Pouches
MICA:Stomasense:主动检测和管理造口袋内泄漏的新途径
  • 批准号:
    MR/W029561/1
  • 财政年份:
    2023
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Research Grant
Collaborative Research: SaTC: CORE: Small: Improving Sanitization and Avoiding Denial of Service Through Correct and Safe Regexes
协作研究:SaTC:核心:小型:通过正确和安全的正则表达式改进清理并避免拒绝服务
  • 批准号:
    2135156
  • 财政年份:
    2022
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Standard Grant
Symposium on the Strategy for Resilient Manufacturing Ecosystems through AI
通过人工智能打造弹性制造生态系统战略研讨会
  • 批准号:
    2132067
  • 财政年份:
    2021
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Boronium Ionic Liquids - Impact of Structure on Chemistry, Electrochemical Stability, Ion Dynamics, and Charge Transport
CAS:合作研究:硼离子液体 - 结构对化学、电化学稳定性、离子动力学和电荷传输的影响
  • 批准号:
    2102978
  • 财政年份:
    2021
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Standard Grant
Workshop: Aligning AI and U.S. Advanced Manufacturing Competitiveness
研讨会:人工智能与美国先进制造业竞争力的结合
  • 批准号:
    2049670
  • 财政年份:
    2020
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Standard Grant
Finite Fields and their Applications at Simon Fraser University
西蒙弗雷泽大学的有限域及其应用
  • 批准号:
    1905024
  • 财政年份:
    2019
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Standard Grant
Topology of Manifolds: Interactions between High and Low Dimensions
流形拓扑:高维和低维之间的相互作用
  • 批准号:
    1850620
  • 财政年份:
    2019
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Standard Grant
Ionic and Molecular Materials of High Thermal Stability: Design, Structure, and Function
高热稳定性离子和分子材料:设计、结构和功能
  • 批准号:
    1800122
  • 财政年份:
    2018
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Standard Grant
Summer School on Surgery and the Classification of Manifolds
外科和歧管分类暑期学校
  • 批准号:
    1638464
  • 财政年份:
    2016
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Standard Grant

相似海外基金

Numerical Methods for Geometric PDE on Manifolds with Arbitrary Topology
任意拓扑流形上几何偏微分方程的数值方法
  • 批准号:
    1620366
  • 财政年份:
    2016
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Continuing Grant
Developments of the geometric topology of homology manifolds with curvature bounded above
曲率有界同调流形几何拓扑的发展
  • 批准号:
    26610012
  • 财政年份:
    2014
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Ozsváth-Szabó Invariants - Geometric Topology of 4-Manifolds
Ozsváth-Szabó 不变量 - 4 流形的几何拓扑
  • 批准号:
    333068-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Ozsváth-Szabó Invariants - Geometric Topology of 4-Manifolds
Ozsváth-Szabó 不变量 - 4 流形的几何拓扑
  • 批准号:
    333068-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Topology of low dimensional manifolds with various geometric structures
具有各种几何结构的低维流形拓扑
  • 批准号:
    20540072
  • 财政年份:
    2008
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Riemannian Topology and Geometric Structures on Manifolds
黎曼拓扑和流形上的几何结构
  • 批准号:
    0623676
  • 财政年份:
    2006
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Standard Grant
Geometric Group Theory and the Topology of 3-Manifolds
几何群论和3-流形拓扑
  • 批准号:
    0203883
  • 财政年份:
    2002
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Continuing Grant
Geometric Group Theory and the Topology of Aspherical Manifolds
几何群论与非球面流形拓扑
  • 批准号:
    0104026
  • 财政年份:
    2001
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Continuing Grant
Geometric structure and topology of manifolds and graphs
流形和图的几何结构和拓扑
  • 批准号:
    10640078
  • 财政年份:
    1998
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topology of manifolds and geometric structures
流形拓扑和几何结构
  • 批准号:
    08454017
  • 财政年份:
    1996
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了