Riemannian Topology and Geometric Structures on Manifolds
黎曼拓扑和流形上的几何结构
基本信息
- 批准号:0623676
- 负责人:
- 金额:$ 2.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-15 至 2007-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0623676Santiago SimancaThis proposal requests funding for the organization of the conference"Riemannian Topology and Geometric Structures on Manifolds," to be heldat the University of New Mexico, Albuquerque, Oct. 10-14, 2006. The objective of this meeting is to provide a forum for the discussion ofrecent advances in the areas of positive sectional curvature, Kaehlerand Sasakian geometry, and their interrelation to mathematical physics,especially M and Superstring theory. We intend to create and provide aplatform for the discussion of these fundamental ideas, the growth theyhave experienced in the recent past, and the open problems of interest.The conference plans to unite a range of worldwide experts, members ofthe local group at UNM, and graduate students and young mathematiciansfrom across the country and beyond, to create an interactive environment for the discussion and understanding of advances in these various branches of mathematics and theoretical physics, for the firm grasp of their many recent results, and for the discussion of plaussible approachesto attack a number of interesting open questions. Strong effort is to be made to encourage the participation of mathematicians from all over the nation, and in particular those belonging to the large minority populationof the Rocky mountain area. The impact of this activity is expected to be made long lasting by the prompt dissemination of its results, presentingthe scientific community with the Proceedings of the conference shortlyafter its completion.
DMS-0623676Santiago Simanca此提案要求为组织“流形上的黎曼拓扑和几何结构”会议提供资金,该会议将于 2006 年 10 月 10 日至 14 日在阿尔伯克基新墨西哥大学举行。这次会议的目的是为讨论正截面曲率、Kaehler 和 Sasakian 领域的最新进展提供一个论坛 几何,以及它们与数学物理的相互关系,特别是 M 和超弦理论。我们打算创建并提供一个平台来讨论这些基本思想、他们最近经历的成长以及感兴趣的开放问题。会议计划联合一系列世界各地的专家、新墨西哥大学当地小组的成员以及来自全国各地和世界各地的研究生和年轻数学家,为讨论和理解数学和理论物理的各个分支的进展创造一个互动的环境,以便牢牢掌握他们的知识。 许多最近的结果,并讨论了解决一些有趣的开放问题的合理方法。我们将大力鼓励全国各地的数学家,特别是落基山区的少数族裔数学家的参与。这项活动的影响预计将通过其结果的迅速传播而持久,并在会议结束后不久向科学界展示会议记录。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Santiago Simanca其他文献
Santiago Simanca的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Collaborative Research: Conference: Workshops in Geometric Topology
合作研究:会议:几何拓扑研讨会
- 批准号:
2350374 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Workshops in Geometric Topology
合作研究:会议:几何拓扑研讨会
- 批准号:
2350373 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Conference: Richmond Geometry Meeting: Geometric Topology and Moduli
会议:里士满几何会议:几何拓扑和模数
- 批准号:
2349810 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Mathematical innovations woven by singularity theory and geometric topology
奇点理论和几何拓扑编织的数学创新
- 批准号:
23H05437 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Geometric topology in constructive point-free topology
构造性无点拓扑中的几何拓扑
- 批准号:
23K03197 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
- 批准号:
2304033 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
New Directions in Geometric Group Theory and Topology
几何群论和拓扑学的新方向
- 批准号:
2203355 - 财政年份:2022
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
CAREER: Curvature, Topology, and Geometric Partial Differential Equations, with new tools from Applied Mathematics
职业:曲率、拓扑和几何偏微分方程,以及应用数学的新工具
- 批准号:
2142575 - 财政年份:2022
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
RTG: Algebraic and Geometric Topology at Michigan State
RTG:密歇根州立大学的代数和几何拓扑
- 批准号:
2135960 - 财政年份:2022
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
CAREER: Fractional Partial Differential Equations, Harmonic Analysis, and Their Applications in the Geometric Calculus of Variations and Quantitative Topology
职业:分数阶偏微分方程、调和分析及其在变分几何微积分和定量拓扑中的应用
- 批准号:
2044898 - 财政年份:2021
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant














{{item.name}}会员




