New Directions in the Asymptotics of Nonlinear Waves

非线性波渐进的新方向

基本信息

  • 批准号:
    1615718
  • 负责人:
  • 金额:
    $ 20.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Nonlinear wave equations give a mathematical description for many phenomena in optics, fluid dynamics, and a variety of other physical systems. Such a description is instrumental for predicting behavior and designing engineering devices, such as optical switches for information transmission. Even when it is not possible to completely determine the solutions to such equations, the system can often be understood satisfactorily by considering an appropriate approximation, such as long time or small dispersion. A rich and maturing asymptotic theory has been developed for the somewhat idealized integrable wave equations. However, in order to provide accurate predictions for more realistic physical systems, it is necessary to extend the current models to account for issues including coupling or interference, higher-order corrections, and boundaries. By taking advantage of recent mathematical advances, this project will improve available methods to better model these three effects. Specific applications of the models studied include the development of all-optical switches, Raman scattering, flux propagation in superconducting Josephson junctions, and hydrodynamic turbulence. The research aims to enhance the physical applicability of current models of nonlinear wave propagation through the following three projects: (1) Extension of the small-dispersion theory to multicomponent systems, including the three-wave resonant interaction equations, to develop better mathematical models of coupled systems. (2) Establishing results on the long-time behavior and onset of instabilities in near-integrable equations, such as Hamiltonian perturbations of the sine-Gordon equation, in order to better incorporate higher-order physical effects that may not be negligible. (3) Extending the unified transform method to understand small-dispersion behavior on finite or semi-finite domains. Analysis of the defocusing nonlinear Schrodinger, massive Thirring, and related equations will improve models where boundary effects are important.
非线性波动方程为光学、流体动力学和其他各种物理系统中的许多现象提供了数学描述。这种描述有助于预测行为和设计工程设备,如用于信息传输的光开关。即使不可能完全确定这些方程的解,通过考虑适当的近似,如长时间或小色散,通常也可以令人满意地理解系统。对于理想化的可积波动方程,已经发展出了丰富而成熟的渐近理论。然而,为了提供更真实的物理系统的准确预测,有必要扩展当前的模型,以解决耦合或干扰,高阶校正和边界等问题。通过利用最新的数学进步,该项目将改进现有的方法,以更好地模拟这三种影响。研究模型的具体应用包括全光开关的发展,拉曼散射,超导约瑟夫森结中的通量传播,和流体动力学湍流。本研究旨在通过以下三个方面的工作来提高现有非线性波传播模型的物理适用性:(1)将小色散理论推广到多组分体系,包括三波共振相互作用方程,以建立更好的耦合体系数学模型。(2)建立关于近可积方程的长时间行为和不稳定性开始的结果,例如正弦-戈登方程的哈密顿扰动,以便更好地纳入可能不可忽略的高阶物理效应。(3)扩展统一变换方法以理解有限或半有限域上的小色散行为。分析散焦非线性薛定谔,大量的Thirring,和相关的方程将改善模型的边界效应是重要的。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Far-Field Asymptotics for Multiple-Pole Solitons in the Large-Order Limit
  • DOI:
    10.1016/j.jde.2021.06.016
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Deniz Bilman;R. Buckingham;Deng‐Shan Wang
  • 通讯作者:
    Deniz Bilman;R. Buckingham;Deng‐Shan Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Buckingham其他文献

The k-tacnode process
  • DOI:
    10.1007/s00440-018-0885-2
  • 发表时间:
    2018-12-04
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Robert Buckingham;Karl Liechty
  • 通讯作者:
    Karl Liechty
Fluid insight moderates the relationship between psychoticism and crystallized intelligence
  • DOI:
    10.1016/j.paid.2011.10.051
  • 发表时间:
    2012-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Robert Buckingham;Michael Kiernan;Samantha Ainsworth
  • 通讯作者:
    Samantha Ainsworth
Sulfur dioxide disproportionation for sulfur based thermochemical energy storage
  • DOI:
    10.1016/j.solener.2015.04.037
  • 发表时间:
    2015-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Bunsen Wong;Lloyd Brown;Robert Buckingham;Wendi Sweet;B. Russ;Max Gorensek
  • 通讯作者:
    Max Gorensek
Nonintersecting Brownian bridges on the unit circle with drift
  • DOI:
    10.1016/j.jfa.2018.05.021
  • 发表时间:
    2019-03-15
  • 期刊:
  • 影响因子:
  • 作者:
    Robert Buckingham;Karl Liechty
  • 通讯作者:
    Karl Liechty

Robert Buckingham的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Buckingham', 18)}}的其他基金

Frontiers in Dispersive Wave Equations
色散波动方程前沿
  • 批准号:
    2108019
  • 财政年份:
    2021
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Standard Grant
Cincinnati Symposium on Probability Theory and Applications 2018
2018 年辛辛那提概率论及其应用研讨会
  • 批准号:
    1832863
  • 财政年份:
    2018
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Standard Grant
Cincinnati Symposium on Probability Theory and Applications 2014, September 19-21, 2014
2014 年辛辛那提概率论及其应用研讨会,2014 年 9 月 19-21 日
  • 批准号:
    1441641
  • 财政年份:
    2014
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Standard Grant
Nonlinear Wave Dynamics: Emergent Methods and Phenomena
非线性波动力学:涌现方法和现象
  • 批准号:
    1312458
  • 财政年份:
    2013
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Standard Grant

相似海外基金

New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
  • 批准号:
    EP/Z000688/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Research Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306378
  • 财政年份:
    2024
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342245
  • 财政年份:
    2024
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Standard Grant
Manchester Metropolitan University and Future Directions CIC KTP 23_24 R3
曼彻斯特城市大学和未来方向 CIC KTP 23_24 R3
  • 批准号:
    10083223
  • 财政年份:
    2024
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Knowledge Transfer Network
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306379
  • 财政年份:
    2024
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Standard Grant
Conference: Future Directions for Mathematics Education Research, Policy, and Practice
会议:数学教育研究、政策和实践的未来方向
  • 批准号:
    2342550
  • 财政年份:
    2024
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Standard Grant
CAREER: New directions in the study of zeros and moments of L-functions
职业:L 函数零点和矩研究的新方向
  • 批准号:
    2339274
  • 财政年份:
    2024
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Continuing Grant
Participant Support for Biomechanists Outlining New Directions Workshop (USA and Italy: BOND); Naples, Italy; 24-27 September 2023
生物力学专家概述新方向研讨会的参与者支持(美国和意大利:BOND);
  • 批准号:
    2314385
  • 财政年份:
    2023
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
  • 批准号:
    2327010
  • 财政年份:
    2023
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了