AF: Small: A-Hypergeometric Solutions of Linear Differential Equations

AF:小:线性微分方程的 A 超几何解

基本信息

  • 批准号:
    1618657
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Many scientific laws are captured as differential equations --formulas that relates a quantity (such as position) to its derivatives(velocity and acceleration). Differential equations are common inscience, mathematics and engineering. They can be solved numerically,but may also have a closed-form solution -- an exact solution writtenin terms of familiar functions.Except for small equations, closed-form solutions were thought to berare. Algorithms for second-order equations, which were developed bythe PI and his students, have demonstrated that closed form solutions of linear differential equations with polynomial coefficientsare actually common; solutions can often be written in terms ofGauss's hypergeometric function, a familiar function in differentialequations.This project aims to find out if closed form solutions are also commonfor higher order equations. The PI will work with two graduatestudents to develop algorithms to search for solutions in terms ofA-hypergeometric functions, which were introduced by Gel'fand,Kapranov and Zelevinski. There is a wide variety of A-hypergeometric functions, whichcorrespond to polytopes. A-hypergeometric functions can bemultivariate, so several tools that currently only exist forunivariate equations need to be generalized. A key motivatingquestion is if convergent integer-series solutions can always bewritten in terms of A-hypergeometric functions. If true, thenA-hypergeometric solutions would be common in areas of mathematics andscience that involve combinatorial structures or integrals, such as the Ising modelor Feynman diagrams in physics. This question leads to several otherson A-hypergeometric functions, some of which can be settled by thealgorithms to be developed in this project.
许多科学定律被归结为微分方程式--将一个量(如位置)与其导数(速度和加速度)联系起来的公式。微分方程式在科学、数学和工程中都很常见。它们可以用数值求解,但也可能有一个闭合形式的解--用熟悉的函数写成的精确解。除了小的方程外,人们认为是闭合形式的解。由PI和他的学生开发的二阶方程的算法已经证明,具有多项式系数的线性微分方程组的闭合形式解实际上是常见的;解通常可以写成高斯超几何函数,这是微分方程式中常见的函数。这个项目的目的是找出闭合形式解是否也适用于高阶方程。PI将与两名毕业生合作,开发算法来搜索由Gel‘fand,Kapranov和Zlevinski引入的超几何函数的解。有各种各样的A超几何函数,它们对应于多面体。A-超几何函数可以是二元的,所以目前只存在于一元方程的几个工具需要推广。一个关键的动机问题是收敛的整数级数解是否总是可以用A-超几何函数来表示。如果是真的,那么超几何解将在涉及组合结构或积分的数学和科学领域中很常见,例如物理学中的伊辛模型或费曼图。这个问题引出了其他几个A-超几何函数,其中一些可以通过本项目中开发的算法来解决。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sporadic Cubic Torsion
偶发立方扭转
  • DOI:
    10.2140/ant.2021.15.1837
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Derickx, Maarten;Etropolski, Anastassia;van Hoeij, Mark;Morrow, Jackson S.;Zureick-Brown, David.
  • 通讯作者:
    Zureick-Brown, David.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark van Hoeij其他文献

Arithmetic identities characterising Heun functions reducible to hypergeometric functions
表征 Heun 函数可简化为超几何函数的算术恒等式
Dihedral Gauss hypergeometric functions
二面高斯超几何函数
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V.Raimundas;Mark van Hoeij;R. Vidunas
  • 通讯作者:
    R. Vidunas
A generalization of Clausen's identity
克劳森身份的概括
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    V.Raimundas;Mark van Hoeij;R. Vidunas;R. Vidunas
  • 通讯作者:
    R. Vidunas
On singular univariate specializations of bivariate hypergeometric functions
关于双变量超几何函数的奇异单变量特化
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V.Raimundas;Mark van Hoeij;R. Vidunas;R. Vidunas;V.Raimundas;Vidunas Raimundas;R. Vidunas
  • 通讯作者:
    R. Vidunas

Mark van Hoeij的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark van Hoeij', 18)}}的其他基金

AF: Small: Solving and Simplifying Algebraic, Differential, and Difference Equations.
AF:小:求解和简化代数方程、微分方程和差分方程。
  • 批准号:
    2007959
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
AF:Small: Linear Differential Equations with a Convergent Integer Series Solution
AF:Small:具有收敛整数级数解的线性微分方程
  • 批准号:
    1319547
  • 财政年份:
    2013
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
AF: Small: Solving Linear Differential in Terms of Special Functions
AF:小:用特殊函数求解线性微分
  • 批准号:
    1017880
  • 财政年份:
    2010
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Closed Form Solutions for Linear Differential and Difference Equations
线性微分方程和差分方程的闭式解
  • 批准号:
    0728853
  • 财政年份:
    2007
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Simplifying Algebraic Numbers and Algebraic Functions
简化代数数和代数函数
  • 批准号:
    0511544
  • 财政年份:
    2005
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
East Coast Computer Algebra Day 2001
2001 年东海岸计算机代数日
  • 批准号:
    0112495
  • 财政年份:
    2001
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Algorithms for Linear Differential Equations and Algebraic Functions.
线性微分方程和代数函数的算法。
  • 批准号:
    0098034
  • 财政年份:
    2001
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Algorithms for Solving Linear Recurrence Equations
求解线性递推方程的算法
  • 批准号:
    9805983
  • 财政年份:
    1998
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Powering Small Craft with a Novel Ammonia Engine
用新型氨发动机为小型船只提供动力
  • 批准号:
    10099896
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Collaborative R&D
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
  • 批准号:
    AH/X011747/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
Fragment to small molecule hit discovery targeting Mycobacterium tuberculosis FtsZ
针对结核分枝杆菌 FtsZ 的小分子片段发现
  • 批准号:
    MR/Z503757/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
Bacteriophage control of host cell DNA transactions by small ORF proteins
噬菌体通过小 ORF 蛋白控制宿主细胞 DNA 交易
  • 批准号:
    BB/Y004426/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
Windows for the Small-Sized Telescope (SST) Cameras of the Cherenkov Telescope Array (CTA)
切伦科夫望远镜阵列 (CTA) 小型望远镜 (SST) 相机的窗口
  • 批准号:
    ST/Z000017/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
CSR: Small: Leveraging Physical Side-Channels for Good
CSR:小:利用物理侧通道做好事
  • 批准号:
    2312089
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
  • 批准号:
    2317251
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
  • 批准号:
    2332922
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329908
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
  • 批准号:
    2331111
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了