International Topology of Manifolds Conference

国际流形拓扑会议

基本信息

  • 批准号:
    1619698
  • 负责人:
  • 金额:
    $ 3.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

This award supports travel for US-based participants in the conference "Topology of Manifolds," held June 27 - July 1, 2016, in Lisbon, Portugal. The event will consist of both plenary talks by senior researchers and contributed talks by junior participants. Manifolds are a generalized notion of space, appearing throughout mathematics and science more broadly. For example, the solutions to a set of equations will often have the structure of a smooth manifold. It is important for both mathematics and its applications to further our understanding of manifolds and their symmetries. Participants in the conference will include leading experts on the study of manifolds, and the purpose of the conference is to further our understanding of this central concept. The conference features plenary lectures by twelve leading world experts. The breadth of the expertise represented by the speakers reflects the breadth of the topic of the conference, the topology of manifolds. Within the topology of manifolds, the conference will focus on three specific areas, the study of moduli spaces, calculus of functors, and algebraic K- and L-theory, all of which have contributed to spectacular classical and recent advances in our understanding of manifolds of low and high dimension. The plenary and contributed talks will cover the forefront of research into the theory of manifolds. The conference will provide younger researchers with opportunities for exchange of knowledge, for networking, and for building collaborations with international peers and future colleagues. This award will increase US participation by supporting travel for US graduate students and speakers. There will be approximately 14 contributed talks at the conference, selected by the scientific committee with attention to diversity, with at least half the talks by young researchers. The conference web page is available at https://sites.google.com/site/manifoldslisbon2016/
该奖项支持美国参与者参加2016年6月27日至7月1日在葡萄牙里斯本举行的“流形拓扑”会议的旅行。该活动将包括高级研究人员的全体会议和初级参与者的贡献演讲。流形是空间的一个广义概念,在数学和科学中出现得更广泛。例如,一组方程的解通常具有光滑流形的结构。对于数学和它的应用来说,进一步理解流形及其对称性是很重要的。会议的与会者将包括流形研究方面的领先专家,会议的目的是进一步加深我们对这一中心概念的理解。会议由12位世界领先的专家进行全体演讲。发言者所代表的专业知识的广度反映了会议主题的广度,流形的拓扑结构。在流形的拓扑结构,会议将集中在三个具体领域,模空间的研究,函子演算,代数K-和L-理论,所有这些都有助于壮观的经典和最近的进展,我们的理解流形的低和高维。全体会议和贡献的会谈将涵盖到流形理论的研究前沿。会议将为年轻的研究人员提供交流知识,建立网络以及与国际同行和未来同事建立合作的机会。 该奖项将通过支持美国研究生和演讲者的旅行来增加美国的参与。会议期间将有大约14场演讲,由科学委员会选择,关注多样性,至少一半的演讲由年轻研究人员进行。会议的网页可在https://sites.google.com/site/manifoldslisbon2016/上找到

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Soren Galatius其他文献

REGIONAL LEFT VENTRICULAR LONGITUDINAL STRAIN IS AN INDEPENDENT PREDICTOR OF HEART FAILURE AND CARDIOVASCULAR DEATH AFTER CORONARY ARTERY BYPASS GRAFTING
  • DOI:
    10.1016/s0735-1097(23)01754-0
  • 发表时间:
    2023-03-07
  • 期刊:
  • 影响因子:
  • 作者:
    Frederikke Vyff;Niklas Dyrby Johansen;Flemming Javier Olsen;Lisa Steen Duus;Filip Soeskov Davidovski;Soeren Lindberg;Thomas Fritz Hansen;sune a. pedersen;Soren Galatius;Rasmus M⊘gelvang;Tor Biering-Sorensen
  • 通讯作者:
    Tor Biering-Sorensen
CHANGE IN GLOBAL LONGITUDINAL STRAIN AND RISK OF HEART FAILURE FOLLOWING ACUTE CORONARY SYNDROME
  • DOI:
    10.1016/s0735-1097(20)32180-x
  • 发表时间:
    2020-03-24
  • 期刊:
  • 影响因子:
  • 作者:
    Kirstine Ravnkilde;Kristoffer Skaarup;Daniel Modin;Anne Nielsen;Mathilde Musoni Falsing;Allan Iversen;Sune Pedersen;Thomas Hansen;Soren Galatius;Thomas Jespersen;Amil M. Shah;Gunnar Gislason;Tor Biering-Sorensen
  • 通讯作者:
    Tor Biering-Sorensen
The Sn-equivariant top weight Euler characteristic of Mg,n
Mg,n 的 Sn 等变顶重欧拉特征
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Melody Chan;Carel Faber;Soren Galatius;Sam Payne
  • 通讯作者:
    Sam Payne
CONTEMPORARY DIABETIC CARDIOMYOPATHY IS CHARACTERIZED BY CONCENTRIC REMODELING AND DIASTOLIC DYSFUNCTION - NOT LEFT VENTRICULAR HYPERTROPHY OR SYSTOLIC DYSFUNCTION
  • DOI:
    10.1016/s0735-1097(16)31543-1
  • 发表时间:
    2016-04-05
  • 期刊:
  • 影响因子:
  • 作者:
    Peter Godsk Jørgensen;Magnus Jensen;Rasmus Mogelvang;Thomas Hansen;Soren Galatius;Tor Biering-Sørensen;Heidi Storgaard;Tina Vilsbøll;Peter Rossing;Jan Jensen
  • 通讯作者:
    Jan Jensen
BURDEN OF HOSPITAL ADMISSION AND REPEAT ANGIOGRAPHY IN ANGINA PECTORIS PATIENTS WITH AND WITHOUT CORONARY ARTERY DISEASE
  • DOI:
    10.1016/s0735-1097(14)61625-9
  • 发表时间:
    2014-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lasse Jespersen;Steen Abildstrom;Anders Hvelplund;Jan Madsen;Soren Galatius;Frants Pedersen;Soren Hojberg;Eva Prescott
  • 通讯作者:
    Eva Prescott

Soren Galatius的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Soren Galatius', 18)}}的其他基金

Manifolds and Moduli Spaces
流形和模空间
  • 批准号:
    1405001
  • 财政年份:
    2014
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Continuing Grant
Young Topologists Meeting 2014, June 30 - July 4, 2014
2014年青年拓扑学家会议,2014年6月30日至7月4日
  • 批准号:
    1430456
  • 财政年份:
    2014
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Standard Grant
Manifolds, Moduli Spaces and Homotopy Theory
流形、模空间和同伦理论
  • 批准号:
    1105058
  • 财政年份:
    2011
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Continuing Grant
Homotopy Theory and Moduli Spaces
同伦理论和模空间
  • 批准号:
    0805843
  • 财政年份:
    2008
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Standard Grant
Homotopy theoretic methods in the study of moduli spaces
模空间研究中的同伦理论方法
  • 批准号:
    0505740
  • 财政年份:
    2005
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: St. Louis Topology Conference: Flows and Foliations in 3-Manifolds
会议:圣路易斯拓扑会议:3 流形中的流动和叶理
  • 批准号:
    2350309
  • 财政年份:
    2024
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Standard Grant
Topology of Kaehler Manifolds, Surface Bundles, and Outer Automorphism Groups
凯勒流形、表面丛和外自同构群的拓扑
  • 批准号:
    2401403
  • 财政年份:
    2023
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Standard Grant
Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
  • 批准号:
    2247008
  • 财政年份:
    2023
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Standard Grant
Low dimensional topology, ordered groups and actions on 1-manifolds
低维拓扑、有序群和 1-流形上的动作
  • 批准号:
    RGPIN-2020-05343
  • 财政年份:
    2022
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Discovery Grants Program - Individual
ALGEBRAIC TOPOLOGY FOR THE STUDY OF MANIFOLDS
研究流形的代数拓扑
  • 批准号:
    2747348
  • 财政年份:
    2022
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Studentship
Geometry and Topology of Manifolds
流形的几何和拓扑
  • 批准号:
    RGPIN-2022-04539
  • 财政年份:
    2022
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Discovery Grants Program - Individual
ALGEBRAIC TOPOLOGY FOR THE STUDY OF MANIFOLDS
研究流形的代数拓扑
  • 批准号:
    2780925
  • 财政年份:
    2022
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Studentship
Curves, Surfaces, and 3-Manifolds: Geometry, Topology, and Dynamics in the Mapping Class Group and Beyond
曲线、曲面和 3 流形:映射类组及其他领域中的几何、拓扑和动力学
  • 批准号:
    2203912
  • 财政年份:
    2022
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Standard Grant
Curves, Surfaces, and 3-Manifolds: Geometry, Topology, and Dynamics in the Mapping Class Group and Beyond
曲线、曲面和 3 流形:映射类组及其他领域中的几何、拓扑和动力学
  • 批准号:
    2231286
  • 财政年份:
    2022
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Standard Grant
Topology of 4-Manifolds, Embeddings, and Stable Homotopy Invariants of Links
4-流形拓扑、嵌入和链接的稳定同伦不变量
  • 批准号:
    2105467
  • 财政年份:
    2021
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了