ALGEBRAIC TOPOLOGY FOR THE STUDY OF MANIFOLDS

研究流形的代数拓扑

基本信息

  • 批准号:
    2747348
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

A (3d) topological quantum field theory (TQFT) is a symmetric monoidal functor V between the tensor 1-category of 2+1 bordisms (possibly with some extra data) and the tensor 1-category of vector spaces over a fixed field equipped with the tensor product. The objects in the category of bordisms are closed 2-dimensional surfaces, and the morphisms between them are given by 3-dimensional manifolds whose boundary is the disjoint union of the surfaces in consideration. The tensor product is given by the disjoint union of surfaces. Such a TQFT gives invariants of closed 3-dimensional manifolds as well as of mapping class groups of surfaces. Indeed, considering the empty set as a closed surface, every 3-dimensional closed manifold M is a morphism from the empty set to itself. Therefore, V(M) is a linear endomorphism of V(empty set), thus yielding an invariant. A similar argument produces the invariant for mapping class groups.A modular tensor category C is a finite (possibly non-semisimple) ribbon category satisfying some extra hypotheses. In 1995, Lyubashenko showed how, given a modular tensor category C, one could construct and invariant of closed 3-manifolds LC as well as an invariant of mapping class groups of surfaces L'C. It is then reasonable to ask whether there exists a (non-semisimple) TQFT producing such invariants. It turns out that there cannot exist a TQFT VC producing the invariant of manifolds LC for C non-semisimple. Indeed, if M is a 3-dimensional closed oriented 3-manifold with non-zero first Betti number, then LC(M) = 0. This implies that, given a closed surface S, dim(VC(S)) = LC(SxS1) = 0, and so VC = 0.However, de Renzi, Gainutdinov, Geer, Patureau-Mirand and Runkel constructed in 2021, out of a modular tensor category C, a TQFT producing Lyubashenko's invariant for mapping class groups L'C. Obviously, such a TQFT also carries an invariant of closed 3-manifolds. Actually, from their construction it is apparent that one gets one such invariant for every projective object P of C. Recall that a projective object is such for which the functor Hom(P,-): C -> Ab is exact. To the best of our knowledge, these invariants have not been studied yet. In particular, it is interesting to know how often they are trivial and whether any of them is useful in practice. It is also interesting to relate such characteristics to the properties of the projective object P in C giving each of these invariants. This project falls within the EPSRC foundations and rigorous treatments.
一个(3D)拓扑量子场论(TQFT)是一个对称的单形函子V,它介于2+1边值(可能有一些额外数据)的张量1-范畴和具有张量积的固定场上的张量1-范畴之间。边界论范畴中的对象是闭的二维曲面,它们之间的态射由三维流形给出,流形的边界是曲面的不相交并。张量积由曲面的不相交并集给出。这样的TQFT给出了闭的三维流形和映射类曲面群的不变量。实际上,将空集看作一个闭曲面,每个三维闭流形M都是从空集到它自己的态射。因此,V(M)是V(空集)的线性自同态,从而产生一个不变量。一个模张量范畴C是一个满足一些额外假设的有限(可能非半单)带状范畴。1995年,Lyubashenko证明了,在给定一个模张量范畴C的情况下,如何构造闭的3-流形LC的不变量以及曲面映射类群的一个不变量。于是,我们有理由问是否存在一个(非半单的)TQFT产生这样的不变量。证明了对于非半单流形,不可能存在产生流形LC不变量的TQFT VC。的确,如果M是具有非零第一Betti数的三维闭定向三维流形,则LC(M)=0。这意味着,给定一个闭曲面S,dim(Vc(S))=Lc(SxS1)=0,因此Vc=0。然而,De Renzi,Gainutdinov,Geer,Patureau-Mirand和Runkel于2021年在模张量范畴C中构造了一个生成Lyubashenko不变量的TQFT,用于映射类群L‘C。显然,这样的TQFT也带有一个闭的三维流形的不变量。实际上,从它们的构造可以明显地看出,对于C的每个射影对象P,都有一个这样的不变量。回想一下,射影对象是这样的,对它来说函子Hom(P,-):C->AB是精确的。就我们所知,这些不变量还没有被研究过。尤其有趣的是,知道它们有多微不足道,以及它们中是否有任何在实践中有用。同样有趣的是,将这些特征与C中的射影对象P的性质联系起来,给出每个不变量。该项目属于EPSRC基础和严格处理范围。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Study on Contact Homology by String Topology
弦拓扑接触同调研究
  • 批准号:
    23KJ1238
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Comprehensive topological study on cobordism, bivariant theory, topology of spaces of morphisms and related topics
协边、二变理论、态射空间拓扑及相关主题的综合拓扑研究
  • 批准号:
    23K03117
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of the topology and the combinatorics of polyhedral products
多面体积的拓扑和组合学研究
  • 批准号:
    22K03284
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
  • 批准号:
    559329-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
ALGEBRAIC TOPOLOGY FOR THE STUDY OF MANIFOLDS
研究流形的代数拓扑
  • 批准号:
    2780925
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
  • 批准号:
    559329-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Nilpotent study of 3-dimensional topology
3 维拓扑的幂零研究
  • 批准号:
    20K03605
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of 3-dimensional topology with a pair of stable map to the plane and its fold map lift
具有一对稳定平面映射及其折叠映射升力的三维拓扑研究
  • 批准号:
    20K03574
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on applied topology using combinatorial homotopy theory
基于组合同伦理论的应用拓扑研究
  • 批准号:
    20K03607
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Complementary study on dynamical systems and foliations using methods of partially ordered set and general topology
使用偏序集和一般拓扑方法对动力系统和叶状结构进行补充研究
  • 批准号:
    20K03583
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了