Computational Methods and Consistency for Dirichlet Graph Partitions
狄利克雷图划分的计算方法和一致性
基本信息
- 批准号:1619755
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will investigate theoretical properties, computational methods, and applications for a particular method of graph partitioning. Generally speaking, graph partitioning is the mathematical problem of subdividing a set into smaller components with desirable properties. This problem has diverse applications in image analysis (medical, satellite, and material), surveillance, social network analysis, and topic modeling, among many others. The results of this project could significantly impact these areas and due to the multidisciplinary nature of this activity, all involved parties will gain awareness and literacy outside their own respective fields. The project provides opportunities for the principal investigator to continue advising and mentoring students. This project will prove fundamental theoretical results and develop computational methods for the Dirichlet graph partitioning problem, formulated as minimizing the sum of the principle Laplace-Dirichlet eigenvalues for each partition component. This graph partitioning problem has rich and exploitable mathematical structure: it is motivated by a geometric problem and has both a variational characterization and an associated stochastic process. The project will have three goals. The first goal is to prove, via Gamma convergence with a suitable metric, the consistency result that Dirichlet partitions of geometric graphs, obtained by sampling from a probability space, converge to Dirichlet partitions of that probability space as the number of sampled points tends to infinity. This result will yield a better understanding of the relationship between the graph and continuum partitioning problems as well as possibly suggest subsampling strategies for extremely large datasets. The second goal addresses important computational aspects of the Dirichlet graph partitioning problem. Although two different relaxations of this problem have been identified, computational methods based on these relaxations necessarily have increased computational complexity. The PI will seek provably convergent new methods that combine variational arguments with ideas from geometry, partial differential equations, and Markov processes in order to extend and overcome these shortcomings. The third goal is to address concrete, real-world problems and to engage the developed algorithms in practical applications.
本计画将探讨一种特殊的图分割方法的理论性质、计算方法与应用。一般来说,图划分是将一个集合细分为具有所需属性的较小组件的数学问题。这个问题在图像分析(医学、卫星和材料)、监控、社交网络分析和主题建模等方面有着广泛的应用。该项目的结果可能会对这些领域产生重大影响,由于该活动的多学科性质,所有参与方都将获得各自领域以外的认识和知识。该项目为主要研究者提供了继续为学生提供咨询和指导的机会。这个项目将证明基本的理论结果,并开发计算方法的Dirichlet图分割问题,制定为最小化的总和的原则拉普拉斯-Dirichlet特征值为每个分区组件。这个图划分问题具有丰富的和可利用的数学结构:它是由一个几何问题的动机,并具有变分表征和相关的随机过程。该项目将有三个目标。第一个目标是证明,通过Gamma收敛与一个合适的度量,一致性的结果,几何图的Dirichlet分区,通过从概率空间采样,收敛到Dirichlet分区的概率空间的采样点的数量趋于无穷大。这一结果将产生一个更好的理解之间的关系图和连续划分问题,以及可能建议的子采样策略,非常大的数据集。第二个目标解决了Dirichlet图划分问题的重要计算方面。虽然已经确定了这个问题的两个不同的松弛,基于这些松弛的计算方法必然增加了计算复杂性。PI将寻求可证明收敛的新方法,结合联合收割机变分参数与几何,偏微分方程和马尔可夫过程的想法,以扩展和克服这些缺点。第三个目标是解决具体的现实问题,并将开发的算法应用于实际应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Braxton Osting其他文献
A semi-definite optimization method for maximizing the shared band gap of topological photonic crystals
- DOI:
10.1016/j.jcp.2024.113538 - 发表时间:
2025-01-15 - 期刊:
- 影响因子:
- 作者:
Chiu-Yen Kao;Junshan Lin;Braxton Osting - 通讯作者:
Braxton Osting
Braxton Osting的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Braxton Osting', 18)}}的其他基金
CAREER: Variational and Geometric Methods for Data Analysis
职业:数据分析的变分和几何方法
- 批准号:
1752202 - 财政年份:2018
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
- 批准号:
2750689 - 财政年份:2025
- 资助金额:
$ 18万 - 项目类别:
Studentship
Developing behavioural methods to assess pain in horses
开发评估马疼痛的行为方法
- 批准号:
2686844 - 财政年份:2025
- 资助金额:
$ 18万 - 项目类别:
Studentship
Population genomic methods for modelling bacterial pathogen evolution
用于模拟细菌病原体进化的群体基因组方法
- 批准号:
DE240100316 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Discovery Early Career Researcher Award
Development and Translation Mass Spectrometry Methods to Determine BioMarkers for Parkinson's Disease and Comorbidities
确定帕金森病和合并症生物标志物的质谱方法的开发和转化
- 批准号:
2907463 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Studentship
Non invasive methods to accelerate the development of injectable therapeutic depots
非侵入性方法加速注射治疗储库的开发
- 批准号:
EP/Z532976/1 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Research Grant
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
- 批准号:
EP/Y002113/1 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Research Grant
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
- 批准号:
2333724 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
- 批准号:
2348712 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CAREER: New methods in curve counting
职业:曲线计数的新方法
- 批准号:
2422291 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant














{{item.name}}会员




