Geometric Methods for Graph Partitioning

图划分的几何方法

基本信息

  • 批准号:
    1461138
  • 负责人:
  • 金额:
    $ 7.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

The proposed activity is to develop and analyze new computational methods for a graph partitioning problem based on the Beltrami energy. This problem has diverse applications in machine learning and image analysis (medical, satellite, and material). For example, a clear need for such methods in imaging has been identified by collaborators at the California NanoSystems Institute, where the proposed work will directly impact fundamental research in nano science and foster the understanding of amyloid beta sheets. Such amyloids are associated with the pathology of more than 20 serious human diseases including Alzheimer's and other neurodegenerative diseases. Thanks to the multidisciplinary nature of the activity, awareness and literacy outside one's field will also be mutually fostered for all involved parties.The PIs, together with their students and collaborators, will seek new methods that combine variational arguments with ideas from geometry and partial differential equations in order to extend and overcome the limitations of existing methods. The research has three goals. The first goal concerns fundamental theoretical questions raised by the proposed model: analyze the existence, uniqueness, and properties of the minimizers of the variational problems; establish a generalized isoperimetric inequality related to the Beltrami functional in the continuum; and explore relations to existing theorems and conjectures about optimal partitions. A graph analogue of the Beltrami energy is formulated and is the foundation for a graph partitioning objective. The PIs have identified a relaxation of this objective and propose an in-depth study of a provably convergent rearrangement method for its solution. The second goal addresses the important computational and numerical aspects of the proposed graph partitioning model. An efficient optimization strategy is key for the framework to be usable in practical applications. Here, promising primal-dual methods from convex optimization will be utilized, as well as other competitive state-of-the-art methods. To develop the most efficient solution method, it will be crucial to explore the similarities to other models, including those for non-negative matrix factorization and those related to motion by mean curvature. The third goal is to address concrete, real-world problems and to engage the developed algorithms in practical applications of societal importance.
提出的活动是开发和分析基于Beltrami能量的图划分问题的新的计算方法。这个问题在机器学习和图像分析(医学、卫星和材料)中有着广泛的应用。例如,加州纳米系统研究所的合作者已经确定了成像中对这种方法的明显需求,在那里拟议的工作将直接影响纳米科学的基础研究,并促进对淀粉样β片剂的理解。这种淀粉样蛋白与包括阿尔茨海默氏症和其他神经退行性疾病在内的20多种严重人类疾病的病理有关。由于活动的跨学科性质,所有参与者都将相互培养自己领域外的意识和素养。PI将与他们的学生和合作者一起,寻求将变分论点与几何和偏微分方程式的思想相结合的新方法,以扩展和克服现有方法的局限性。这项研究有三个目标。第一个目标涉及由所提出的模型提出的基本理论问题:分析变分问题极小值的存在、唯一性和性质;建立与连续统中的Beltrami泛函有关的广义等周不等式;以及探索与现有关于最优划分的定理和猜想的关系。建立了Beltrami能量的图模拟,它是图划分目标的基础。投资促进机构已经确定了这一目标的放松,并提议深入研究可证明收敛的重排方法来解决这一问题。第二个目标解决了所提出的图划分模型的重要计算和数值方面的问题。一个有效的优化策略是该框架能否在实际应用中使用的关键。在这里,将使用来自凸优化的有前途的原始-对偶方法,以及其他竞争最先进的方法。为了开发最有效的求解方法,关键是要探索与其他模型的相似性,包括非负矩阵分解模型和与平均曲率运动相关的模型。第三个目标是解决具体的、现实世界的问题,并将开发的算法应用于具有社会重要性的实际应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Braxton Osting其他文献

A semi-definite optimization method for maximizing the shared band gap of topological photonic crystals
  • DOI:
    10.1016/j.jcp.2024.113538
  • 发表时间:
    2025-01-15
  • 期刊:
  • 影响因子:
  • 作者:
    Chiu-Yen Kao;Junshan Lin;Braxton Osting
  • 通讯作者:
    Braxton Osting

Braxton Osting的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Braxton Osting', 18)}}的其他基金

CAREER: Variational and Geometric Methods for Data Analysis
职业:数据分析的变分和几何方法
  • 批准号:
    1752202
  • 财政年份:
    2018
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Continuing Grant
Computational Methods and Consistency for Dirichlet Graph Partitions
狄利克雷图划分的计算方法和一致性
  • 批准号:
    1619755
  • 财政年份:
    2016
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Continuing Grant
Geometric Methods for Graph Partitioning
图划分的几何方法
  • 批准号:
    1418812
  • 财政年份:
    2014
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1103959
  • 财政年份:
    2011
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Fellowship Award

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Graph learning methods for engieering mammalian promoters in bioproduction
生物生产中哺乳动物启动子的图学习方法
  • 批准号:
    2786047
  • 财政年份:
    2023
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Studentship
LEAPS-MPS: Applications of Algebraic and Topological Methods in Graph Theory Throughout the Sciences
LEAPS-MPS:代数和拓扑方法在图论中在整个科学领域的应用
  • 批准号:
    2313262
  • 财政年份:
    2023
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Standard Grant
Automatic Methods for Knowledge Graph Construction using Ontology-based Context Management
使用基于本体的上下文管理的知识图谱自动构建方法
  • 批准号:
    23H03462
  • 财政年份:
    2023
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
On Regularity Methods and Applications in Graph Theory
论图论中的正则方法及其应用
  • 批准号:
    2404167
  • 财政年份:
    2023
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Continuing Grant
SCH: Graph-based Spatial Transcriptomics Computational Methods in Kidney Diseases
SCH:肾脏疾病中基于图的空间转录组学计算方法
  • 批准号:
    10816929
  • 财政年份:
    2023
  • 资助金额:
    $ 7.9万
  • 项目类别:
Nonparametric statistical methods based on graph theory
基于图论的非参数统计方法
  • 批准号:
    RGPIN-2022-03264
  • 财政年份:
    2022
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Discovery Grants Program - Individual
Spectral methods for single and multiple graph inference
用于单图和多图推理的谱方法
  • 批准号:
    2210805
  • 财政年份:
    2022
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Standard Grant
III: Small: Comprehensive Methods to Learn to Augment Graph Data
III:小:学习增强图数据的综合方法
  • 批准号:
    2146761
  • 财政年份:
    2022
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Standard Grant
Graph Theoretical Methods for Blockchain Data Analysis
区块链数据分析的图论方法
  • 批准号:
    2139349
  • 财政年份:
    2022
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Standard Grant
Signal Processing Over Networks: Graph-Based Methods for Data Analysis
网络信号处理:基于图的数据分析方法
  • 批准号:
    RGPIN-2017-06266
  • 财政年份:
    2021
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了