Meshfree Finite Difference Methods for Nonlinear Elliptic Equations

非线性椭圆方程的无网格有限差分法

基本信息

项目摘要

Nonlinear elliptic equations describe problems as varied as the design of lenses and reflectors, mapping the subsurface of the earth, interpretation of medical images, and modelling complex weather phenomena. However, existing tools for solving these equations are practical only in very simple settings, and can fail when faced with realistic data. This project will introduce a new class of methods for solving nonlinear elliptic equations when the data is unstructured and non-smooth. The new mathematical and computational techniques developed in this project will lead to fast, reliable methods for solving equations in the realistic settings required for further progress in current applications.This project will introduce a new class of meshfree finite difference methods for solving nonlinear degenerate elliptic equations in two- and three-dimensions. Whereas existing convergent methods for fully nonlinear equations often require computations to be performed on a uniform grid in a rectangular domain, this framework will allow equations to be posed on unstructured point clouds. Methods will rely on unusually large search neighborhoods in order to construct approximations that align with the structure of the underlying PDE operator. The resulting schemes will correctly approximate weak (viscosity) solutions, while allowing for adaptivity and complicated geometries. This project will also introduce new formulations of several non-classical boundary conditions, which will be used to produce meshfree implementations. Fast solution techniques for the resulting algebraic systems will be developed.
非线性椭圆方程描述了各种各样的问题,如透镜和反射器的设计,绘制地球的地下地图,医学图像的解释,以及模拟复杂的天气现象。然而,用于求解这些方程的现有工具仅在非常简单的设置中是实用的,并且在面对现实数据时可能会失败。本项目将介绍一类新的方法,用于解决非结构化和非光滑数据时的非线性椭圆方程。本项目开发的新的数学和计算技术将导致在当前应用进一步发展所需的现实环境中求解方程的快速、可靠的方法。本项目将介绍一类新的无网格有限差分方法,用于求解二维和三维的非线性退化椭圆方程。而现有的完全非线性方程的收敛方法通常需要在矩形域中的均匀网格上进行计算,该框架将允许方程在非结构化点云上进行。方法将依赖于异常大的搜索邻域,以构建与底层PDE算子的结构一致的近似。由此产生的计划将正确地近似弱(粘性)的解决方案,同时允许自适应和复杂的几何形状。本项目还将介绍几种非经典边界条件的新公式,这些公式将用于产生无网格实现。快速解决所产生的代数系统的技术将被开发。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A convergent finite difference method for computing minimal Lagrangian graphs
计算最小拉格朗日图的收敛有限差分法
Higher-Order Adaptive Finite Difference Methods for Fully Nonlinear Elliptic Equations
  • DOI:
    10.1007/s10915-017-0586-5
  • 发表时间:
    2018-06-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Hamfeldt, Brittany Froese;Salvador, Tiago
  • 通讯作者:
    Salvador, Tiago
Convergent Finite Difference Methods for Fully Nonlinear Elliptic Equations in Three Dimensions
三维全非线性椭圆方程的收敛有限差分法
  • DOI:
    10.1007/s10915-021-01714-6
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Hamfeldt, Brittany Froese;Lesniewski, Jacob
  • 通讯作者:
    Lesniewski, Jacob
Simplified freeform optics design for complicated laser beam shaping
  • DOI:
    10.1364/ao.56.009308
  • 发表时间:
    2017-11-20
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Feng, Zexin;Froese, Brittany D.;Wang, Yongtian
  • 通讯作者:
    Wang, Yongtian
Application of optimal transport and the quadratic Wasserstein metric to full-waveform inversion
  • DOI:
    10.1190/geo2016-0663.1
  • 发表时间:
    2016-12
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Yunan Yang;Bjorn Engquist;Junzhe Sun;Brittany D. Froese
  • 通讯作者:
    Yunan Yang;Bjorn Engquist;Junzhe Sun;Brittany D. Froese
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brittany Froese Hamfeldt其他文献

A Convergent Numerical Method for the Reflector Antenna Problem via Optimal Transport on the Sphere
球面最优传输反射面天线问题的收敛数值方法
A strong comparison principle for the generalized Dirichlet problem for Monge-Ampere
Monge-Ampere广义狄利克雷问题的强比较原理
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brittany Froese Hamfeldt
  • 通讯作者:
    Brittany Froese Hamfeldt
A Convergent Quadrature Based Method For The Monge-Ampère Equation
蒙日-安培方程的收敛求积法
  • DOI:
    10.48550/arxiv.2205.03483
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jake Brusca;Brittany Froese Hamfeldt
  • 通讯作者:
    Brittany Froese Hamfeldt

Brittany Froese Hamfeldt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brittany Froese Hamfeldt', 18)}}的其他基金

Approximation of transport maps from local and non-local Monge-Ampere equations
根据局部和非局部 Monge-Ampere 方程近似输运图
  • 批准号:
    2308856
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: Generated Jacobian Equations in Geometric Optics and Optimal Transport
职业:生成几何光学和最优传输中的雅可比方程
  • 批准号:
    1751996
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant

相似国自然基金

Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of High-Performance Finite-Difference Based Computational Models for Electromagnetic Field Assessment
开发基于有限差分的高性能电磁场评估计算模型
  • 批准号:
    568474-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Postdoctoral Fellowships
Slender body theory and finite difference computations to characterize particle-fluid interactions at moderate Reynolds numbers
细长体理论和有限差分计算来表征中等雷诺数下的颗粒-流体相互作用
  • 批准号:
    2206851
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
NSF-CBMS Regional Research Conference, Nonstandard Finite Difference Methods: Advances in Theory and Applications
NSF-CBMS 区域研究会议,非标准有限差分方法:理论与应用进展
  • 批准号:
    1933548
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Octree-Based Finite Difference Methods for Efficient Fluid Animation
基于八叉树的高效流体动画有限差分方法
  • 批准号:
    544837-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    University Undergraduate Student Research Awards
Novel High Order Accurate Finite Difference Schemes Constructed via Superconvergence of Finite Element Methods
有限元超收敛构造的新型高阶精确有限差分格式
  • 批准号:
    1913120
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Redundancy, retiming and data flow in compiling finite-difference applications for manycore architectures
为众核架构编译有限差分应用程序时的冗余、重定时和数据流
  • 批准号:
    2293810
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Studentship
Simulating Dynamical Systems in 3 Dimensions with Finite Difference Methods
使用有限差分法模拟 3 维动态系统
  • 批准号:
    526759-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    University Undergraduate Student Research Awards
Estimation of strong ground motion using accurate and efficient mesh-free finite-difference method
使用准确高效的无网格有限差分法估计强地面运动
  • 批准号:
    17K06531
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of the next-generation vibroacoustic finite-difference time-domain method and application to the floor vibration simulation
下一代振动声学时域有限差分方法的发展及其在地板振动模拟中的应用
  • 批准号:
    17K14774
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Aeroelastic Tailoring of Low Speed Aircraft through an Implicit Finite Difference Method
通过隐式有限差分法对低速飞机进行气动弹性剪裁
  • 批准号:
    511105-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了