CAREER: Generated Jacobian Equations in Geometric Optics and Optimal Transport
职业:生成几何光学和最优传输中的雅可比方程
基本信息
- 批准号:1751996
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The design of lenses and mirrors to precisely control the intensity pattern and phase of light beams is important for many applications including microlithography, optical data storage, medical treatment, headlight design, and astronomy. The shape of the lenses or mirrors can be obtained by solving equations known as Generated Jacobian Equations (GJEs). However, there are currently no methods available for solving these equations except in the very simplest settings. This project will introduce new mathematical and computational techniques for solving GJEs, which will lead to new software that can solve these challenging equations. These new techniques will be used to solve several different lens design problems. Complementing this research plan, the investigator will produce a comprehensive series of video lectures that teach core mathematical topics within the context of cutting edge research. These will be used to enhance the classroom environment and attract students into STEM fields. They will also be made available to the public as free open courseware that can be used to facilitate self-study in non-traditional learning environments, complement course content in developing nations, change public attitudes about the nature and usefulness of mathematics, and inspire women to pursue mathematics.The goal of this project is to introduce new analytical and numerical techniques for solving a large class of Generated Jacobian Equations (GJEs) on the plane and sphere. Typical GJEs need to be supplemented with a global, nonlinear constraint on the solution gradient. This project will introduce an equivalent local formulation and develop a robust theory of weak solutions. This will be used to establish criteria that ensure convergence of numerical methods. The investigator will introduce generalized finite difference methods for solving GJEs on the plane. These will be analyzed, implemented, and used to solve several lens design problems. By exploiting local coordinates, the investigator will also design generalized finite difference methods for solving GJEs on the sphere, which will be applied to problems in geometric optics and optimal transportation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
用于精确控制光束强度模式和相位的透镜和反射镜设计对于许多应用(包括微光刻、光学数据存储、医疗、前灯设计和天文学)都很重要。透镜或镜子的形状可以通过求解称为生成雅可比方程 (GJE) 的方程来获得。然而,除了最简单的设置之外,目前没有可用的方法来求解这些方程。该项目将引入新的数学和计算技术来求解 GJE,这将带来能够求解这些具有挑战性的方程的新软件。这些新技术将用于解决几个不同的镜头设计问题。作为该研究计划的补充,研究人员将制作一系列全面的视频讲座,在前沿研究的背景下教授核心数学主题。这些将用于改善课堂环境并吸引学生进入 STEM 领域。它们还将作为免费开放课件向公众提供,可用于促进非传统学习环境中的自学,补充发展中国家的课程内容,改变公众对数学的性质和实用性的态度,并激励女性追求数学。该项目的目标是引入新的分析和数值技术,用于在飞机上求解一大类雅可比方程(GJE) 和球体。典型的 GJE 需要补充对解梯度的全局非线性约束。该项目将引入等效的局部公式并开发稳健的弱解理论。这将用于建立确保数值方法收敛的标准。研究人员将引入广义有限差分方法来求解平面上的 GJE。这些将被分析、实施并用于解决多个镜头设计问题。通过利用局部坐标,研究人员还将设计用于求解球体上的 GJE 的广义有限差分方法,该方法将应用于几何光学和最佳运输中的问题。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Convergent Finite Difference Methods for Fully Nonlinear Elliptic Equations in Three Dimensions
三维全非线性椭圆方程的收敛有限差分法
- DOI:10.1007/s10915-021-01714-6
- 发表时间:2022
- 期刊:
- 影响因子:2.5
- 作者:Hamfeldt, Brittany Froese;Lesniewski, Jacob
- 通讯作者:Lesniewski, Jacob
A convergent finite difference method for computing minimal Lagrangian graphs
计算最小拉格朗日图的收敛有限差分法
- DOI:10.3934/cpaa.2021182
- 发表时间:2021
- 期刊:
- 影响因子:1
- 作者:Hamfeldt, Brittany Froese;Lesniewski, Jacob
- 通讯作者:Lesniewski, Jacob
A convergent finite difference method for optimal transport on the sphere
球体最优输运的收敛有限差分法
- DOI:10.1016/j.jcp.2021.110621
- 发表时间:2021
- 期刊:
- 影响因子:4.1
- 作者:Hamfeldt, Brittany Froese;Turnquist, Axel G.R.
- 通讯作者:Turnquist, Axel G.R.
Convergent numerical method for the reflector antenna problem via optimal transport on the sphere
基于球体最优传输的反射面天线问题的收敛数值方法
- DOI:10.1364/josaa.439679
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Froese Hamfeldt, Brittany;Turnquist, Axel G. R.
- 通讯作者:Turnquist, Axel G. R.
A convergence framework for optimal transport on the sphere
- DOI:10.1007/s00211-022-01292-1
- 发表时间:2021-03
- 期刊:
- 影响因子:2.1
- 作者:Brittany Froese Hamfeldt;Axel G. R. Turnquist
- 通讯作者:Brittany Froese Hamfeldt;Axel G. R. Turnquist
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brittany Froese Hamfeldt其他文献
A Convergent Numerical Method for the Reflector Antenna Problem via Optimal Transport on the Sphere
球面最优传输反射面天线问题的收敛数值方法
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:1.9
- 作者:
Brittany Froese Hamfeldt;Axel G. R. Turnquist - 通讯作者:
Axel G. R. Turnquist
A strong comparison principle for the generalized Dirichlet problem for Monge-Ampere
Monge-Ampere广义狄利克雷问题的强比较原理
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Brittany Froese Hamfeldt - 通讯作者:
Brittany Froese Hamfeldt
A Convergent Quadrature Based Method For The Monge-Ampère Equation
蒙日-安培方程的收敛求积法
- DOI:
10.48550/arxiv.2205.03483 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Jake Brusca;Brittany Froese Hamfeldt - 通讯作者:
Brittany Froese Hamfeldt
Brittany Froese Hamfeldt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brittany Froese Hamfeldt', 18)}}的其他基金
Approximation of transport maps from local and non-local Monge-Ampere equations
根据局部和非局部 Monge-Ampere 方程近似输运图
- 批准号:
2308856 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Meshfree Finite Difference Methods for Nonlinear Elliptic Equations
非线性椭圆方程的无网格有限差分法
- 批准号:
1619807 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
基于多重计算全息片(Computer-generated Hologram,CGH)的光学非球面干涉绝对检验方法研究
- 批准号:62375132
- 批准年份:2023
- 资助金额:54.00 万元
- 项目类别:面上项目
相似海外基金
Attribution of Machine-generated Code for Accountability
机器生成代码的责任归属
- 批准号:
DP240102164 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Discovery Projects
NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
- 批准号:
2341206 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Local Collection and Treatment of Laser Generated Decontamination Fume
激光净化烟气的本地收集和处理
- 批准号:
2902249 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Studentship
Field Measurements for Understanding Atmospheric Oxidation Generated by Electrical Discharges
用于了解放电产生的大气氧化的现场测量
- 批准号:
2323203 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Understanding of Consumption Context Using User Generated Big Data
使用用户生成的大数据了解消费环境
- 批准号:
23H00859 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis of cognitive maps and their memory generated from combinations of multi modalities.
分析多模态组合生成的认知图及其记忆。
- 批准号:
23K16962 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Trustable AI generated Mapping (TAIM)
可信人工智能生成地图 (TAIM)
- 批准号:
10064920 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Collaborative R&D
Effect of the odorants generated by the Maillard reaction on aging through inhalation
美拉德反应产生的气味物质对吸入老化的影响
- 批准号:
22KJ2827 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalytically Generated Amidyl Radicals for Site-Selective Intermolecular C-H Functionalization
催化生成酰胺自由基用于位点选择性分子间 C-H 官能化
- 批准号:
10679463 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Electrochemically Generated Inhaled Nitric Oxide (iNO) delivery via High Flow Nasal Cannula (HFNC)
通过高流量鼻插管 (HFNC) 输送电化学产生的吸入一氧化氮 (iNO)
- 批准号:
10637303 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:














{{item.name}}会员




