CAREER: Towards Efficient and Scalable Zero-Knowledge Proofs
职业:迈向高效且可扩展的零知识证明
基本信息
- 批准号:2401481
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The rise of digital platforms, such as cloud computing, blockchains, and machine learning services, is leading to numerous new applications and transforming daily life. However, users lack knowledge of other participants and it is challenging to establish trust on these platforms. A key research question is determining how users can protect the privacy of their data, and ensure that the computations performed by others are valid. The focus of this project is on developing efficient and scalable zero-knowledge proof schemes, an important cryptographic primitive to ensure data privacy and computation integrity simultaneously. The project advances three aspects of the zero-knowledge proof schemes: theory, application and system level. On the theory side, new practical schemes with linear running time in the size of the computation are constructed based on error-correcting codes and expander graphs. On the application side, the project investigates machine learning algorithms and graph algorithms and develops efficient zero-knowledge proofs tailored for these applications. On the system side, the project initiates the study of memory-efficient and distributed algorithms for zero-knowledge proofs. The project will bring the efficiency and scalability of zero-knowledge proof to the next level, making it applicable and accessible to the broader community of engineers and developers in the industry. The results will enable new applications of privacy-preserving and verifiable data mining on digital platforms to protect users’ data privacy. The project also develops new course materials for undergraduate and graduate cybersecurity education, and for broadening the participation in computing of underrepresented groups and K-12 students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
云计算、区块链和机器学习服务等数字平台的兴起正在催生众多新应用,并改变着日常生活。然而,用户缺乏对其他参与者的了解,在这些平台上建立信任具有挑战性。一个关键的研究问题是确定用户如何保护其数据的隐私,并确保其他人执行的计算是有效的。该项目的重点是开发高效和可扩展的零知识证明方案,这是同时确保数据隐私和计算完整性的重要密码原语。本课题从理论、应用和系统三个方面对零知识证明方案进行了研究。在理论方面,基于纠错码和扩展图,构造了新的具有线性运行时间的计算量的实用方案。在应用方面,该项目研究了机器学习算法和图算法,并为这些应用开发了高效的零知识证明。在系统方面,该项目启动了零知识证明的内存效率和分布式算法的研究。该项目将把零知识证明的效率和可扩展性提升到一个新的水平,使其适用于更广泛的行业工程师和开发人员社区。研究结果将使数字平台上的隐私保护和可验证数据挖掘的新应用成为可能,以保护用户的数据隐私。该项目还为本科生和研究生的网络安全教育开发了新的课程材料,并扩大了代表性不足的群体和K-12学生对计算的参与。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pianist: Scalable zkRollups via Fully Distributed Zero-Knowledge Proofs
Pianist:通过完全分布式零知识证明实现可扩展的 zkRollups
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Tianyi Liu, Tiancheng Xie
- 通讯作者:Tianyi Liu, Tiancheng Xie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yupeng Zhang其他文献
Random Number Generation Based DoS Attack-resilient Distributed Secondary Control Strategy
基于随机数生成的抗DoS攻击的分布式二次控制策略
- DOI:
10.1109/spies55999.2022.10082111 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Shuang Qie;Jian Dou;Xuan Liu;Yue Tang;Yupeng Zhang;Yi Zheng - 通讯作者:
Yi Zheng
Exogenous N-hexanoyl-L-homoserine lactone assists in upflow anaerobic sludge blanket recovery from acetate accumulation via aceticlastic methanogens enrichment
外源 N-己酰基-L-高丝氨酸内酯通过乙酸弹性产甲烷菌富集协助上流厌氧污泥床从乙酸积累中恢复
- DOI:
10.1016/j.biortech.2021.126600 - 发表时间:
2021 - 期刊:
- 影响因子:11.4
- 作者:
Yupeng Zhang;Fengqin Liu;Hongen Liu;Wenwen Zhang;Jianzheng Li - 通讯作者:
Jianzheng Li
A new method to accelerate depth extraction for aperture-coded camera
一种加速孔径编码相机深度提取的新方法
- DOI:
10.1016/j.ijleo.2012.12.039 - 发表时间:
2013-10 - 期刊:
- 影响因子:3.1
- 作者:
Yupeng Zhang;Yongtian Wang;Dongdong Weng;Siyuan Zheng - 通讯作者:
Siyuan Zheng
Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models
揭示缺陷:探索大型语言模型的合成数据的缺陷和缓解策略
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jie Chen;Yupeng Zhang;Bingning Wang;Wayne Xin Zhao;Ji;Weipeng Chen - 通讯作者:
Weipeng Chen
Graphene-Based Light-Emitting Diodes
石墨烯基发光二极管
- DOI:
10.1201/9781315196671-9 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jialu Zheng;H. Hoh;Yupeng Zhang;Q. Bao - 通讯作者:
Q. Bao
Yupeng Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yupeng Zhang', 18)}}的其他基金
CAREER: Towards Efficient and Scalable Zero-Knowledge Proofs
职业:迈向高效且可扩展的零知识证明
- 批准号:
2144625 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
- 批准号:
2338683 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Green Functions as a Service: Towards Sustainable and Efficient Distributed Computing Infrastructure
职业:绿色功能即服务:迈向可持续、高效的分布式计算基础设施
- 批准号:
2340722 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Towards 3D Omnidirectional and Efficient Wireless Power Transfer with Controlled 2D Near-Field Coil Array
职业:利用受控 2D 近场线圈阵列实现 3D 全向高效无线功率传输
- 批准号:
2338697 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Towards Efficient In-storage Indexing
职业:实现高效的存储内索引
- 批准号:
2338457 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Towards Efficient Cryptography for Next Generation Applications
职业:面向下一代应用的高效密码学
- 批准号:
2402031 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Towards Efficient and Scalable Zero-Knowledge Proofs
职业:迈向高效且可扩展的零知识证明
- 批准号:
2144625 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Towards Efficient and Fast Hierarchical Federated Learning in Heterogeneous Wireless Edge Networks
职业:在异构无线边缘网络中实现高效快速的分层联邦学习
- 批准号:
2145031 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Towards Elastic Security with Safe and Efficient Network Security Function Virtualization
职业:通过安全高效的网络安全功能虚拟化迈向弹性安全
- 批准号:
2129164 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Towards Efficient Accelerated Cloud Data Centers
职业:迈向高效加速云数据中心
- 批准号:
2047521 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Towards a Principled Framework for Resilient, Data Efficient and Scalable Reinforcement Learning for Control
职业:建立一个有弹性、数据高效且可扩展的强化学习控制原则框架
- 批准号:
2045783 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant