Multiscale Weak Galerkin Methods for Flows in Highly Heterogeneous Media
高度异质介质流动的多尺度弱伽辽金方法
基本信息
- 批准号:1620016
- 负责人:
- 金额:$ 21.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fluid flow in porous media is important in many areas, including oil extraction and recovery, environmental protection, energy conservation, and the design and operation of fuel cells, solar cells, and batteries. Development of accurate, efficient, and reliable numerical schemes to simulate such fluid flow has received considerable attention in mathematics and engineering communities over the past decade. However, mathematical modeling and numerical simulation of fluid flows in heterogeneous media and realistic settings remain a challenge. Much of the difficulty in porous media flow simulations is due to the involvement of different length scales, from macroscopic scale to microscopic scale. This research project aims to develop accurate, efficient, and reliable numerical algorithms for flows in porous media. Weak Galerkin finite element methods (WGFEMs) will be developed for flows in highly heterogeneous domains, porous media, and complex flows in heterogeneous media. The methods under development are anticipated to significantly advance the utility of numerical analysis for realistic scientific and engineering applications. Graduate students are involved in the project.This project aims to develop new weak Galerkin (WG) finite element methods (FEMs) with excellent flexibility in element construction and mesh generation, suited to dealing with heterogeneous physical parameters. Additionally, it is envisioned that the new multiscale WGFEMs will be applicable in other fields, such as structural analysis, electromagnetic wave scattering, image processing, and computer vision. Collaboration with petroleum industry partners is planned in this research project.
多孔介质中的流体流动在许多领域都很重要,包括石油开采和回收、环境保护、节能以及燃料电池、太阳能电池和电池的设计和操作。在过去的十年里,发展精确、高效、可靠的数值方法来模拟这种流体流动已经引起了数学和工程界的极大关注。 然而,非均质介质和现实环境中流体流动的数学建模和数值模拟仍然是一个挑战。多孔介质流动模拟的困难主要是由于涉及不同的长度尺度,从宏观尺度到微观尺度。该研究项目旨在开发多孔介质中流动的精确、高效和可靠的数值算法。 弱伽辽金有限元法(WGFEM)将被开发用于高度非均匀区域、多孔介质中的流动以及非均匀介质中的复杂流动。正在开发的方法预计将显着推进实用的数值分析现实的科学和工程应用。 研究生参与了该项目。本项目旨在开发新的弱伽辽金(WG)有限元方法(FEM),该方法在单元构造和网格生成方面具有出色的灵活性,适合处理非均匀物理参数。此外,可以预见,新的多尺度WGFEM将适用于其他领域,如结构分析,电磁波散射,图像处理和计算机视觉。该研究项目计划与石油工业伙伴合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiu Ye其他文献
A DG Method for the Stokes Equations on Tensor Product Meshes with $$[P_k]^d-P_{k-1}$$ Element
- DOI:
10.1007/s42967-022-00243-9 - 发表时间:
2023-03-17 - 期刊:
- 影响因子:1.400
- 作者:
Lin Mu;Xiu Ye;Shangyou Zhang;Peng Zhu - 通讯作者:
Peng Zhu
A macro BDM H-div mixed finite element on polygonal and polyhedral meshes
- DOI:
10.1016/j.apnum.2024.08.013 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Xuejun Xu;Xiu Ye;Shangyou Zhang - 通讯作者:
Shangyou Zhang
superconvergence by L2 projections for stabilized finite element methods for the Stokes equations
Stokes 方程稳定有限元方法的 L2 投影超收敛
- DOI:
- 发表时间:
- 期刊:
- 影响因子:1.1
- 作者:
Xiu Ye;Jian Li;Junping Wang - 通讯作者:
Junping Wang
Correction: Total tanshinones ameliorates cGAS-STING-mediated inflammatory and autoimmune diseases by affecting STING-IRF3 binding
- DOI:
10.1186/s13020-024-00996-w - 发表时间:
2024-10-23 - 期刊:
- 影响因子:5.700
- 作者:
Chengwei Li;Jincai Wen;Xiaoyan Zhan;Wei Shi;Xiu Ye;Qing Yao;Simin Chen;Congyang Zheng;Xianlin Wang;Xinru Wen;Xiaohe Xiao;Yinghao Wang;Zhaofang Bai - 通讯作者:
Zhaofang Bai
Study on the influence of porosity and medium flow on the corrosion behavior of sheet-gyroid porous structures formed by LPBF
- DOI:
10.1007/s10853-024-10371-7 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:3.900
- 作者:
Xiu Ye;Xiaojie Shi;Xiaojin Miao;Peipei Lu;Meiping Wu - 通讯作者:
Meiping Wu
Xiu Ye的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiu Ye', 18)}}的其他基金
2013 International Conference on Mathematical Modeling and Computation
2013年数学建模与计算国际会议
- 批准号:
1301611 - 财政年份:2013
- 资助金额:
$ 21.65万 - 项目类别:
Standard Grant
Adaptive Finite Element Method for Interface Problems
界面问题的自适应有限元方法
- 批准号:
1115097 - 财政年份:2011
- 资助金额:
$ 21.65万 - 项目类别:
Continuing Grant
A complete numerical analysis for finite volume methods to The Navier-Stokes equations
纳维-斯托克斯方程有限体积法的完整数值分析
- 批准号:
0813571 - 财政年份:2008
- 资助金额:
$ 21.65万 - 项目类别:
Continuing Grant
A Divergence Free H(div) Finite Element Method
一种无散度H(div)有限元方法
- 批准号:
0612435 - 财政年份:2006
- 资助金额:
$ 21.65万 - 项目类别:
Standard Grant
相似国自然基金
磁转动超新星爆发中weak r-process的关键核反应
- 批准号:12375145
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
相似海外基金
高含水率坑井の水生産抑制に向けたWeakゲル開発と広域流体制御技術の向上
开发弱凝胶并改进广域流体控制技术以抑制高含水井产水
- 批准号:
24K08317 - 财政年份:2024
- 资助金额:
$ 21.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
- 批准号:
24K16928 - 财政年份:2024
- 资助金额:
$ 21.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Organization of transcriptional machinery by weak multivalent interactions
通过弱多价相互作用组织转录机制
- 批准号:
10758297 - 财政年份:2023
- 资助金额:
$ 21.65万 - 项目类别:
A Graph-based Methodology for Modeling the Nucleation of Weak Electrolytes
基于图形的弱电解质成核建模方法
- 批准号:
2317787 - 财政年份:2023
- 资助金额:
$ 21.65万 - 项目类别:
Continuing Grant
Bottom-up Approach for Improving Systems with weak power systems networks and gradual integration of off-grid community systems
自下而上的弱电力系统网络改进方法和离网社区系统的逐步整合
- 批准号:
2891694 - 财政年份:2023
- 资助金额:
$ 21.65万 - 项目类别:
Studentship
CAREER: Towards Open World Event Knowledge Extraction with Weak Supervision
职业:在弱监督下实现开放世界事件知识提取
- 批准号:
2238940 - 财政年份:2023
- 资助金额:
$ 21.65万 - 项目类别:
Continuing Grant
Weak Solutions and Turbulence in Fluid Dynamics
流体动力学中的弱解和湍流
- 批准号:
2346799 - 财政年份:2023
- 资助金额:
$ 21.65万 - 项目类别:
Standard Grant
Creation of a CWO Control Method for Swarm Robots Based on "Weak Constraints"
基于“弱约束”的群体机器人CWO控制方法的创建
- 批准号:
23KJ1445 - 财政年份:2023
- 资助金额:
$ 21.65万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Improving organisational outcomes through weak ties: an investigation using behaviour settings
通过弱关系改善组织成果:使用行为设置的调查
- 批准号:
2887051 - 财政年份:2023
- 资助金额:
$ 21.65万 - 项目类别:
Studentship