Adaptive Finite Element Method for Interface Problems
界面问题的自适应有限元方法
基本信息
- 批准号:1115097
- 负责人:
- 金额:$ 23.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-15 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of the project is to develop and to analyze a robust adaptive finite element method for the Darcy-Stokes-Brinkman model with extremely variable or discontinuous parameters. The proposed research include: developing a robust adaptive H(div) finite element method; conducting a priori error analysis; deriving efficiency and reliability bounds for a posteriori error estimators; proving convergence of adaptive mesh refinement procedures; developing a computer program for implementation of the method.The Darcy-Stokes-Brinkman model has wide range of applications such as surface and sub-surface water interaction in geoscience, blood circulation in health science and, fuel cells, filtration problems in environment science. Solving these problems has attracted a lot of attention from mathematicians and engineers, and many works have been done in developing and analyzing numerical algorithms for Darcy-Stokes-Brinkman model. Majority of these works treat viscosity and permeability as either constant or near zero jump. However, for the practical relevant problems, these physical parameters are either discontinuous or highly variable. Singularity caused by the highly varied physical parameters creates tremendous difficulty in development of numerical algorithms. There is a great interest in obtaining efficient and robust numerical methods to simulate these real word problems.
该项目的目标是开发和分析一个强大的自适应有限元方法的达西-斯托克斯-布林克曼模型的极端可变或不连续的参数。拟议的研究包括:发展一种稳健的自适应H(div)有限元方法;进行先验误差分析;推导后验误差估计的效率和可靠性界限;证明自适应网格细化过程的收敛性; Darcy-Stokes-Brinkman模型具有广泛的应用,如在地球科学中的地表和次地表水相互作用,健康科学中的血液循环,以及环境科学中的燃料电池和过滤问题。这些问题的求解引起了数学家和工程师们的广泛关注,人们在Darcy-Stokes-Brinkman模型的数值算法研究方面做了大量的工作。大多数这些作品处理粘度和渗透率为恒定或接近零的跳跃。然而,对于实际相关问题,这些物理参数要么是不连续的,要么是高度可变的。由物理参数高度变化引起的奇异性给数值算法的发展带来了巨大的困难。有很大的兴趣,获得有效的和强大的数值方法来模拟这些真实的字的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiu Ye其他文献
A DG Method for the Stokes Equations on Tensor Product Meshes with $$[P_k]^d-P_{k-1}$$ Element
- DOI:
10.1007/s42967-022-00243-9 - 发表时间:
2023-03-17 - 期刊:
- 影响因子:1.400
- 作者:
Lin Mu;Xiu Ye;Shangyou Zhang;Peng Zhu - 通讯作者:
Peng Zhu
A macro BDM H-div mixed finite element on polygonal and polyhedral meshes
- DOI:
10.1016/j.apnum.2024.08.013 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Xuejun Xu;Xiu Ye;Shangyou Zhang - 通讯作者:
Shangyou Zhang
superconvergence by L2 projections for stabilized finite element methods for the Stokes equations
Stokes 方程稳定有限元方法的 L2 投影超收敛
- DOI:
- 发表时间:
- 期刊:
- 影响因子:1.1
- 作者:
Xiu Ye;Jian Li;Junping Wang - 通讯作者:
Junping Wang
Correction: Total tanshinones ameliorates cGAS-STING-mediated inflammatory and autoimmune diseases by affecting STING-IRF3 binding
- DOI:
10.1186/s13020-024-00996-w - 发表时间:
2024-10-23 - 期刊:
- 影响因子:5.700
- 作者:
Chengwei Li;Jincai Wen;Xiaoyan Zhan;Wei Shi;Xiu Ye;Qing Yao;Simin Chen;Congyang Zheng;Xianlin Wang;Xinru Wen;Xiaohe Xiao;Yinghao Wang;Zhaofang Bai - 通讯作者:
Zhaofang Bai
Study on the influence of porosity and medium flow on the corrosion behavior of sheet-gyroid porous structures formed by LPBF
- DOI:
10.1007/s10853-024-10371-7 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:3.900
- 作者:
Xiu Ye;Xiaojie Shi;Xiaojin Miao;Peipei Lu;Meiping Wu - 通讯作者:
Meiping Wu
Xiu Ye的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiu Ye', 18)}}的其他基金
Multiscale Weak Galerkin Methods for Flows in Highly Heterogeneous Media
高度异质介质流动的多尺度弱伽辽金方法
- 批准号:
1620016 - 财政年份:2016
- 资助金额:
$ 23.11万 - 项目类别:
Continuing Grant
2013 International Conference on Mathematical Modeling and Computation
2013年数学建模与计算国际会议
- 批准号:
1301611 - 财政年份:2013
- 资助金额:
$ 23.11万 - 项目类别:
Standard Grant
A complete numerical analysis for finite volume methods to The Navier-Stokes equations
纳维-斯托克斯方程有限体积法的完整数值分析
- 批准号:
0813571 - 财政年份:2008
- 资助金额:
$ 23.11万 - 项目类别:
Continuing Grant
A Divergence Free H(div) Finite Element Method
一种无散度H(div)有限元方法
- 批准号:
0612435 - 财政年份:2006
- 资助金额:
$ 23.11万 - 项目类别:
Standard Grant
相似国自然基金
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Physics-Preserving Adaptive Finite Element Methods for Thermo-Poroelasticity
合作研究:热多孔弹性的物理保持自适应有限元方法
- 批准号:
2208402 - 财政年份:2022
- 资助金额:
$ 23.11万 - 项目类别:
Standard Grant
Hybrid Parallel Adaptive Finite Element Analysis and Design for High-Speed Microelectronic System Interconnections
高速微电子系统互连的混合并行自适应有限元分析与设计
- 批准号:
RGPIN-2022-04190 - 财政年份:2022
- 资助金额:
$ 23.11万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Physics-Preserving Adaptive Finite Element Methods for Thermo-Poroelasticity
合作研究:热多孔弹性的物理保持自适应有限元方法
- 批准号:
2208426 - 财政年份:2022
- 资助金额:
$ 23.11万 - 项目类别:
Standard Grant
Hybrid Parallel Adaptive Finite Element Analysis and Design for High-Speed Microelectronic System Interconnections
高速微电子系统互连的混合并行自适应有限元分析与设计
- 批准号:
RGPIN-2016-04891 - 财政年份:2021
- 资助金额:
$ 23.11万 - 项目类别:
Discovery Grants Program - Individual
Hybrid Parallel Adaptive Finite Element Analysis and Design for High-Speed Microelectronic System Interconnections
高速微电子系统互连的混合并行自适应有限元分析与设计
- 批准号:
RGPIN-2016-04891 - 财政年份:2020
- 资助金额:
$ 23.11万 - 项目类别:
Discovery Grants Program - Individual
Adaptive Finite Element Methods for Flows in Porous Media
多孔介质流动的自适应有限元方法
- 批准号:
2281583 - 财政年份:2019
- 资助金额:
$ 23.11万 - 项目类别:
Studentship
EAGER: Numerical two-dimensional fluid simulations and finite element analysis to model an adaptive and flexible microplasma discharge system.
EAGER:数值二维流体模拟和有限元分析,用于对自适应且灵活的微等离子体放电系统进行建模。
- 批准号:
1917144 - 财政年份:2019
- 资助金额:
$ 23.11万 - 项目类别:
Standard Grant
Hybrid Parallel Adaptive Finite Element Analysis and Design for High-Speed Microelectronic System Interconnections
高速微电子系统互连的混合并行自适应有限元分析与设计
- 批准号:
RGPIN-2016-04891 - 财政年份:2019
- 资助金额:
$ 23.11万 - 项目类别:
Discovery Grants Program - Individual
Hybrid Parallel Adaptive Finite Element Analysis and Design for High-Speed Microelectronic System Interconnections
高速微电子系统互连的混合并行自适应有限元分析与设计
- 批准号:
RGPIN-2016-04891 - 财政年份:2018
- 资助金额:
$ 23.11万 - 项目类别:
Discovery Grants Program - Individual
Hybrid Parallel Adaptive Finite Element Analysis and Design for High-Speed Microelectronic System Interconnections
高速微电子系统互连的混合并行自适应有限元分析与设计
- 批准号:
RGPIN-2016-04891 - 财政年份:2017
- 资助金额:
$ 23.11万 - 项目类别:
Discovery Grants Program - Individual