High order accuracy WENO methods for high dimensional problems on sparse grids
稀疏网格上高维问题的高阶精度 WENO 方法
基本信息
- 批准号:1620108
- 负责人:
- 金额:$ 19.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-15 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
High order accuracy numerical methods are especially efficient for solving mathematical models in computational fluid dynamics and computational biology which contain complex solution structures. The computational cost increases significantly when the number of grid points is large or the spatial dimension of the problem is high, due to the "curse of dimensionality". How to achieve fast computations by high order accuracy methods is a very important question especially for long-time simulations. This research project aims to develop efficient high order accuracy numerical methods on sparse grids for high spatial dimensional problems. The new methods have the potential to be applied to a broader class of applications in quantum electronic systems, molecular motors, finance, collective cell motions in biology, gene regulatory network, etc. The PI will design, analyze and implement novel high order Krylov integration factor (IF) weighted essentially nonoscillatory (WENO) algorithms for solving hyperbolic or convection-diffusion partial differential equation (PDE) problems on sparse grids by using the sparse-grid combination technique to deal with the high dimensional challenge. The sparse-grid method is a powerful approximation tool for high dimensional problems. It has been successfully used in many scientific and engineering applications. Discretizations on sparse grids involve much fewer degrees of freedom than that on single grids. Efficient numerical simulations of these high dimensional systems will help in studying interesting biological questions in this area. The proposed research will contribute in the active area of dealing with the "curse of dimensionality". A suite of powerful computational tools for solving high dimensional nonlinear PDEs will be developed. These techniques are expected to make positive contributions to computer simulations of complicated phenomena in biological and physical systems. The proposed activity will also provide excellent training and education opportunities for both graduate and undergraduate students interested in research at the interface of mathematics, computation, and applications.
高阶精度数值方法对于求解包含复杂解结构的计算流体力学和计算生物学数学模型特别有效。由于“维数诅咒”,当网格点数量较大或问题的空间维数较高时,计算成本会显著增加。如何通过高阶精度方法实现快速计算是一个非常重要的问题,特别是对于长时间的仿真。本研究项目旨在针对高空间维度问题,开发高效、高阶精度的稀疏网格数值方法。这些新方法有潜力应用于量子电子系统、分子马达、金融、生物学中的集体细胞运动、基因调控网络等更广泛的应用领域。PI将设计,分析和实现新的高阶Krylov积分因子(IF)加权本质非振荡(WENO)算法,用于解决稀疏网格上的双曲或对流扩散偏微分方程(PDE)问题,使用稀疏网格组合技术来处理高维挑战。稀疏网格法是求解高维问题的有力逼近工具。它已成功地应用于许多科学和工程应用。稀疏网格上的离散化比单网格上的离散化涉及的自由度少得多。这些高维系统的有效数值模拟将有助于研究这一领域有趣的生物学问题。本文的研究将为解决“维度诅咒”的活跃领域做出贡献。将开发一套强大的计算工具来求解高维非线性偏微分方程。这些技术有望对生物和物理系统中复杂现象的计算机模拟作出积极贡献。该活动还将为对数学、计算和应用领域的研究感兴趣的研究生和本科生提供良好的培训和教育机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yongtao Zhang其他文献
Decomposition of Phragmites australis rhizomes in artificial land-water transitional zones (ALWTZs) and management implications
人工陆水过渡区(ALWTZ)芦苇根茎的分解及其管理意义
- DOI:
10.1007/s11707-015-0490-y - 发表时间:
2015 - 期刊:
- 影响因子:2
- 作者:
Zhen Han;B. Cui;Yongtao Zhang - 通讯作者:
Yongtao Zhang
Feature knowledge distillation-based model lightweight for prohibited item detection in X-ray security inspection images
基于特征知识蒸馏的X射线安检图像违禁物品检测模型轻量化
- DOI:
10.1016/j.aei.2025.103125 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:9.900
- 作者:
Yu Ren;Lun Zhao;Yongtao Zhang;Yiyao Liu;Jinfeng Yang;Haigang Zhang;Baiying Lei - 通讯作者:
Baiying Lei
Deficiency of Rab26 causes behavioral defects in mice through impaired trafficking of serotonin (5-HT) transporter
Rab26 缺乏通过 5-羟色胺(5-HT)转运蛋白运输受损导致小鼠行为缺陷
- DOI:
10.1016/j.isci.2025.112931 - 发表时间:
2025-07-18 - 期刊:
- 影响因子:4.100
- 作者:
Yandan Ren;Ziyan Wang;Ziheng Wei;Ruijuan Zhuang;Yongtao Zhang;Xiaoxi Liu;Cong Jiang;Xuan Liu;Ye Yun;Yanfang Li;Wanjin Hong;Tuanlao Wang - 通讯作者:
Tuanlao Wang
Protective effects of extracellular proteins of Saccharomycopsis fibuligera on UVA-damaged human skin fibroblasts
纤维糖酵母胞外蛋白对 UVA 损伤的人皮肤成纤维细胞的保护作用
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:5.6
- 作者:
Yongtao Zhang;Dongdong Wang;H. Fu;Dan Zhao;Jiachan Zhang;Meng Li;Changtao Wang - 通讯作者:
Changtao Wang
A Unified Packet Core Network Architecture and Drone Prototype for ID/Locator Separation
用于 ID/定位器分离的统一分组核心网络架构和无人机原型
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Shoushou Ren;Yongtao Zhang;Shihui Hu - 通讯作者:
Shihui Hu
Yongtao Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yongtao Zhang', 18)}}的其他基金
High order numerical methods for PDEs on complex domains and their applications in computational biology
复杂领域偏微分方程的高阶数值方法及其在计算生物学中的应用
- 批准号:
0810413 - 财政年份:2008
- 资助金额:
$ 19.33万 - 项目类别:
Standard Grant
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 19.33万 - 项目类别:
Collaborative R&D
Investigating the acceptability and accuracy of cervical screening and self-sampling in postnatal women to coincide with the 6-week postnatal check-up
调查产后妇女进行宫颈筛查和自我采样以配合产后 6 周检查的可接受性和准确性
- 批准号:
MR/X030776/1 - 财政年份:2024
- 资助金额:
$ 19.33万 - 项目类别:
Research Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 19.33万 - 项目类别:
Continuing Grant
Sample Size calculations for UPDATing clinical prediction models to Ensure their accuracy and fairness in practice (SS-UPDATE)
用于更新临床预测模型的样本量计算,以确保其在实践中的准确性和公平性(SS-UPDATE)
- 批准号:
MR/Z503873/1 - 财政年份:2024
- 资助金额:
$ 19.33万 - 项目类别:
Research Grant
Improving accuracy, coverage, and sustainability of functional protein annotation in InterPro, Pfam and FunFam using Deep Learning methods PID 7012435
使用深度学习方法提高 InterPro、Pfam 和 FunFam 中功能蛋白注释的准确性、覆盖范围和可持续性 PID 7012435
- 批准号:
BB/X018563/1 - 财政年份:2024
- 资助金额:
$ 19.33万 - 项目类别:
Research Grant
Improving accuracy, coverage, and sustainability of functional protein annotation in InterPro, Pfam and FunFam using Deep Learning methods
使用深度学习方法提高 InterPro、Pfam 和 FunFam 中功能蛋白注释的准确性、覆盖范围和可持续性
- 批准号:
BB/X018660/1 - 财政年份:2024
- 资助金额:
$ 19.33万 - 项目类别:
Research Grant
STTR Phase I: Microhydraulic Actuator for High-Accuracy, High-Speed Position Stages
STTR 第一阶段:用于高精度、高速位置平台的微液压执行器
- 批准号:
2335170 - 财政年份:2024
- 资助金额:
$ 19.33万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 19.33万 - 项目类别:
Continuing Grant
DMS-EPSRC: Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
- 批准号:
EP/Y030990/1 - 财政年份:2024
- 资助金额:
$ 19.33万 - 项目类别:
Research Grant
An innovative Lawtech AI/ML platform with human oversight that manages off-payroll worker status and periodically assesses the role status to ensure accuracy.
具有人工监督功能的创新 Lawtech AI/ML 平台,可管理工资外员工的状态并定期评估角色状态以确保准确性。
- 批准号:
10099483 - 财政年份:2024
- 资助金额:
$ 19.33万 - 项目类别:
Collaborative R&D