Fast algorithms for nonlinear kinetic models

非线性动力学模型的快速算法

基本信息

  • 批准号:
    1620250
  • 负责人:
  • 金额:
    $ 20.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

In multiscale modeling hierarchy, the Boltzmann and related kinetic equations serve as a building block that bridges atomistic and continuum models. These equations describe the non-equilibrium dynamics of a gas or system comprised of a large number of particles in random motion and constantly colliding with each other, and have found applications in various fields such as rarefied gas/plasma dynamics, radiative transfer, semiconductor modeling, etc. The prominent challenges associated with numerically approximating the Boltzmann-like equations are the expense of evaluating the collision term - a high-dimensional, nonlinear, nonlocal integral operator. Fast algorithms developed in this project will greatly advance the state-of-the-art simulation of collisional kinetic equations, and will enable scientists and engineers to effectively handle more complex systems that have previously not been feasible, due to the enormous expense of evaluating the collision term.The new algorithms will be based on spectral approximation which stands out for its superior accuracy among the available Boltzmann solvers. To reduce the huge computational cost of conventional spectral methods, the main idea is to exploit and leverage the convolutional and low-rank structure in the collision integral. Four specific aims will be addressed: 1) fast algorithms for the Boltzmann collision operator with general collision kernel that will allow efficient simulation of particle interactions beyond hard sphere model; 2) fast algorithms for the multi-species Boltzmann equation, which would be invaluable for describing gaseous mixtures; 3)fast algorithms for the inelastic Boltzmann equation, which have immediate application in modeling granular materials; 4) a fast deterministic solver for the Schrodinger-quantum Boltzmann system modeling the kinetics of Bose-Einstein condensate at finite temperature.
在多尺度建模层次中,玻尔兹曼和相关的动力学方程作为一个构建块,连接原子模型和连续模型。这些方程描述了由大量随机运动并不断相互碰撞的粒子组成的气体或系统的非平衡动力学,并且已经在各种领域中找到了应用,例如稀薄气体/等离子体动力学,辐射传递,半导体建模,与数值近似玻尔兹曼方程相关的突出挑战是评估碰撞项的费用-高-一维非线性非局部积分算子。在这个项目中开发的快速算法将大大推进国家的最先进的碰撞动力学方程的模拟,并将使科学家和工程师能够有效地处理更复杂的系统,以前是不可行的,由于巨大的费用评估的碰撞term.新的算法将基于光谱近似,其中脱颖而出的上级精度之间可用的玻尔兹曼求解器。为了减少传统谱方法的巨大计算成本,主要思想是利用和利用碰撞积分中的卷积和低秩结构。具体目标有四个:1)具有一般碰撞核的Boltzmann碰撞算子的快速算法,这将允许有效模拟硬球模型之外的粒子相互作用; 2)多组分Boltzmann方程的快速算法,这将对描述气体混合物非常有价值; 3)非弹性Boltzmann方程的快速算法,这将直接应用于模拟颗粒材料; 4)有限温度下玻色-爱因斯坦凝聚动力学的薛定谔-量子玻尔兹曼系统的快速确定性求解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jingwei Hu其他文献

Compact Code-Based Signature for Reconfigurable Devices With Side Channel Resilience
具有侧通道弹性的可重构设备的紧凑的基于代码的签名
Toward Practical Code-Based Signature: Implementing Fast and Compact QC-LDGM Signature Scheme on Embedded Hardware
迈向实用的基于代码的签名:在嵌入式硬件上实现快速且紧凑的 QC-LDGM 签名方案
Determining the effects of annealing time on the glass transition temperature of Pueraria lobata (Willd.) Ohwi starch
A particle method for the multispecies Landau equation
多物种朗道方程的粒子法
  • DOI:
    10.48550/arxiv.2310.16143
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jos'e A. Carrillo;Jingwei Hu;Samuel Q. Van Fleet
  • 通讯作者:
    Samuel Q. Van Fleet
An Annual Electric Energy Trade Scheduling Model under the Dual Track Mode
双轨模式下年度电能交易调度模型
  • DOI:
    10.3390/en15145075
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Na Zhang;Mingli Zhang;Liang Sun;Jingwei Hu;Jinqi Li;Weidong Li
  • 通讯作者:
    Weidong Li

Jingwei Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jingwei Hu', 18)}}的其他基金

CAREER: Predictive Simulations of Complex Kinetic Systems
职业:复杂运动系统的预测模拟
  • 批准号:
    2153208
  • 财政年份:
    2021
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant
CAREER: Predictive Simulations of Complex Kinetic Systems
职业:复杂运动系统的预测模拟
  • 批准号:
    1654152
  • 财政年份:
    2017
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant

相似国自然基金

固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
  • 批准号:
    60973026
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of FAST-DOSE assay system for the rapid assessment of acute radiation exposure, individual radiosensitivity and injury in victims for a large-scale radiological incident
开发快速剂量测定系统,用于快速评估大规模放射事件受害者的急性辐射暴露、个体放射敏感性和损伤
  • 批准号:
    10784562
  • 财政年份:
    2023
  • 资助金额:
    $ 20.57万
  • 项目类别:
Development of FAST-DOSE assay system for the rapid assessment of acute radiation exposure, individual radiosensitivity and injury in victims for a large-scale radiological incident
开发快速剂量测定系统,用于快速评估大规模放射事件受害者的急性辐射暴露、个体放射敏感性和损伤
  • 批准号:
    10089406
  • 财政年份:
    2020
  • 资助金额:
    $ 20.57万
  • 项目类别:
Development of FAST-DOSE assay system for the rapid assessment of acute radiation exposure, individual radiosensitivity and injury in victims for a large-scale radiological incident
开发快速剂量测定系统,用于快速评估大规模放射事件受害者的急性辐射暴露、个体放射敏感性和损伤
  • 批准号:
    10558479
  • 财政年份:
    2020
  • 资助金额:
    $ 20.57万
  • 项目类别:
Development of FAST-DOSE assay system for the rapid assessment of acute radiation exposure, individual radiosensitivity and injury in victims for a large-scale radiological incident
开发快速剂量测定系统,用于快速评估大规模放射事件受害者的急性辐射暴露、个体放射敏感性和损伤
  • 批准号:
    10582237
  • 财政年份:
    2020
  • 资助金额:
    $ 20.57万
  • 项目类别:
Development of FAST-DOSE assay system for the rapid assessment of acute radiation exposure, individual radiosensitivity and injury in victims for a large-scale radiological incident
开发快速剂量测定系统,用于快速评估大规模放射事件受害者的急性辐射暴露、个体放射敏感性和损伤
  • 批准号:
    10335155
  • 财政年份:
    2020
  • 资助金额:
    $ 20.57万
  • 项目类别:
Fast Algorithms for Nonlinear Optimal Control of Geodesic Flows of Diffeomorphisms
微分同胚测地流非线性最优控制的快速算法
  • 批准号:
    2012825
  • 财政年份:
    2020
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
Development of FAST-DOSE assay system for the rapid assessment of acute radiation exposure, individual radiosensitivity and injury in victims for a large-scale radiological incident
开发快速剂量测定系统,用于快速评估大规模放射事件受害者的急性辐射暴露、个体放射敏感性和损伤
  • 批准号:
    10336135
  • 财政年份:
    2020
  • 资助金额:
    $ 20.57万
  • 项目类别:
Fast algorithms for large-scale nonlinear algebraic eigenproblems
大规模非线性代数本征问题的快速算法
  • 批准号:
    1719461
  • 财政年份:
    2016
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
Kernel-based Nonlinear Learning for Fast Magnetic Resonance Imaging with Sub-Nyquist Sampling
基于内核的非线性学习,用于亚奈奎斯特采样的快速磁共振成像
  • 批准号:
    9119020
  • 财政年份:
    2015
  • 资助金额:
    $ 20.57万
  • 项目类别:
Fast algorithms for large-scale nonlinear algebraic eigenproblems
大规模非线性代数本征问题的快速算法
  • 批准号:
    1419100
  • 财政年份:
    2014
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了