CAREER: Predictive Simulations of Complex Kinetic Systems
职业:复杂运动系统的预测模拟
基本信息
- 批准号:1654152
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to build an integrated program of research and education focused on advances in predictive simulations of complex kinetic systems. Such systems are comprised of a large number of particles in random motion and are best described by the Boltzmann and related kinetic equations. In practical applications, there are many sources of uncertainties that can arise in kinetic systems: imprecise measurements for initial and boundary conditions, incomplete knowledge of the fundamental interaction mechanism between particles, and so on. Understanding the impact of these uncertainties is critical to the simulations of the complex kinetic systems, and will allow scientists and engineers to obtain more reliable predictions and perform better risk assessment. Due to the unique challenges arising in kinetic equations, such as multiple scales, high dimensionality, and positivity, very few existing generic uncertainty quantification (UQ) algorithms can be applied directly. To bridge this gap, the research objective of this project is to develop highly efficient stochastic and multiscale numerical methods for Boltzmann-like kinetic equations. A parallel educational objective is to create innovative opportunities for students at all levels to improve science, technology, engineering, and mathematics (STEM) education and promote career interest in these disciplines, especially among female students. Specifically, we will pursue four research and educational aims: 1) develop stochastic asymptotic-preserving methods for multiscale kinetic equations; 2) construct high performance stochastic algorithms for the Boltzmann collision operator; 3) design physics-preserving UQ algorithms for kinetic systems; and 4) create education and outreach activities for students through undergraduate STEM classroom innovation; graduate curriculum development in kinetic theory; graduate and undergraduate mentoring; and organizing an after-school math research program for high school girls and family math/science nights at middle and elementary schools.
该项目旨在建立一个研究和教育的综合计划,重点是复杂动力学系统的预测模拟的进展。这种系统由大量随机运动的粒子组成,最好用玻尔兹曼方程和相关的动力学方程来描述。在实际应用中,动力学系统中可能出现许多不确定性:初始和边界条件的不精确测量,粒子之间基本相互作用机制的不完整知识,等等。理解这些不确定性的影响对于复杂动力学系统的模拟至关重要,这将使科学家和工程师能够获得更可靠的预测,并进行更好的风险评估。由于动力学方程中出现的独特挑战,如多尺度,高维和正性,很少有现有的通用不确定性量化(UQ)算法可以直接应用。为了弥补这一差距,本项目的研究目标是开发高效的随机和多尺度数值方法的玻尔兹曼动力学方程。一个平行的教育目标是为各级学生创造创新机会,以改善科学、技术、工程和数学教育,并促进对这些学科的职业兴趣,特别是在女生中。具体来说,我们将追求四个研究和教育目标:1)为多尺度动力学方程开发随机渐近保持方法; 2)为玻尔兹曼碰撞算子构建高性能随机算法; 3)为动力学系统设计物理保持UQ算法; 4)通过本科STEM课堂创新为学生创建教育和推广活动;动力学理论研究生课程开发;研究生和本科生指导;为高中女生组织课后数学研究方案,并在中小学组织家庭数学/科学之夜。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the uniform accuracy of implicit-explicit backward differentiation formulas (IMEX-BDF) for stiff hyperbolic relaxation systems and kinetic equations
- DOI:10.1090/mcom/3602
- 发表时间:2019-12
- 期刊:
- 影响因子:0
- 作者:Jingwei Hu;Ruiwen Shu
- 通讯作者:Jingwei Hu;Ruiwen Shu
Asymptotic-Preserving and Positivity-Preserving Implicit-Explicit Schemes for the Stiff BGK Equation
- DOI:10.1137/17m1144362
- 发表时间:2017-08
- 期刊:
- 影响因子:0
- 作者:Jingwei Hu;Ruiwen Shu;Xiangxiong Zhang
- 通讯作者:Jingwei Hu;Ruiwen Shu;Xiangxiong Zhang
A fast Fourier spectral method for the homogeneous Boltzmann equation with non-cutoff collision kernels
非截止碰撞核齐次玻尔兹曼方程的快速傅立叶谱方法
- DOI:10.1016/j.jcp.2020.109806
- 发表时间:2020
- 期刊:
- 影响因子:4.1
- 作者:Hu, Jingwei;Qi, Kunlun
- 通讯作者:Qi, Kunlun
A New Stability and Convergence Proof of the Fourier--Galerkin Spectral Method for the Spatially Homogeneous Boltzmann Equation
空间齐次玻尔兹曼方程的傅里叶-伽辽金谱法新的稳定性和收敛性证明
- DOI:10.1137/20m1351813
- 发表时间:2021
- 期刊:
- 影响因子:2.9
- 作者:Hu, Jingwei;Qi, Kunlun;Yang, Tong
- 通讯作者:Yang, Tong
A Petrov-Galerkin spectral method for the inelastic Boltzmann equation using mapped Chebyshev functions
- DOI:10.3934/krm.2020023
- 发表时间:2020
- 期刊:
- 影响因子:1
- 作者:Jingwei Hu;Jie Shen;Yingwei Wang
- 通讯作者:Jingwei Hu;Jie Shen;Yingwei Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jingwei Hu其他文献
Compact Code-Based Signature for Reconfigurable Devices With Side Channel Resilience
具有侧通道弹性的可重构设备的紧凑的基于代码的签名
- DOI:
10.1109/tcsi.2020.2984026 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Jingwei Hu;Yao Liu;R. Cheung;S. Bhasin;S. Ling;Huaxiong Wang - 通讯作者:
Huaxiong Wang
Toward Practical Code-Based Signature: Implementing Fast and Compact QC-LDGM Signature Scheme on Embedded Hardware
迈向实用的基于代码的签名:在嵌入式硬件上实现快速且紧凑的 QC-LDGM 签名方案
- DOI:
10.1109/tcsi.2017.2684828 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jingwei Hu;R. Cheung - 通讯作者:
R. Cheung
Determining the effects of annealing time on the glass transition temperature of Pueraria lobata (Willd.) Ohwi starch
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:
- 作者:
Xiaoyan Zhu;Xianfeng Du;Xu Chen;Jingwei Hu;Xiuhong Zhou;Li Guo - 通讯作者:
Li Guo
A particle method for the multispecies Landau equation
多物种朗道方程的粒子法
- DOI:
10.48550/arxiv.2310.16143 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jos'e A. Carrillo;Jingwei Hu;Samuel Q. Van Fleet - 通讯作者:
Samuel Q. Van Fleet
An Annual Electric Energy Trade Scheduling Model under the Dual Track Mode
双轨模式下年度电能交易调度模型
- DOI:
10.3390/en15145075 - 发表时间:
2022 - 期刊:
- 影响因子:3.2
- 作者:
Na Zhang;Mingli Zhang;Liang Sun;Jingwei Hu;Jinqi Li;Weidong Li - 通讯作者:
Weidong Li
Jingwei Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jingwei Hu', 18)}}的其他基金
CAREER: Predictive Simulations of Complex Kinetic Systems
职业:复杂运动系统的预测模拟
- 批准号:
2153208 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Fast algorithms for nonlinear kinetic models
非线性动力学模型的快速算法
- 批准号:
1620250 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似海外基金
Predictive multiscale free energy simulations of hybrid transition metal catalysts
混合过渡金属催化剂的预测多尺度自由能模拟
- 批准号:
EP/W013738/1 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Expanding the Frontiers of Predictive Simulations of Light and Matter Interactions
扩大光与物质相互作用的预测模拟的前沿
- 批准号:
RGPIN-2020-04192 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Predictive multiscale free energy simulations of hybrid transition metal catalysts
混合过渡金属催化剂的预测多尺度自由能模拟
- 批准号:
EP/W014378/1 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Predictive multiscale free energy simulations of hybrid transition metal catalysts
混合过渡金属催化剂的预测多尺度自由能模拟
- 批准号:
EP/W014580/1 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Shoulder musculoskeletal modeling: from data-tracking to predictive simulations
肩部肌肉骨骼建模:从数据跟踪到预测模拟
- 批准号:
RGPIN-2019-04978 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: DMREF: Uncovering Mechanisms of Grain Boundary Migration in Polycrystals for Predictive Simulations of Grain Growth
合作研究:DMREF:揭示多晶晶界迁移机制,用于晶粒生长的预测模拟
- 批准号:
2246833 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Uncovering Mechanisms of Grain Boundary Migration in Polycrystals for Predictive Simulations of Grain Growth
合作研究:DMREF:揭示多晶晶界迁移机制,用于晶粒生长的预测模拟
- 批准号:
2118945 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Predictive Simulations of Complex Kinetic Systems
职业:复杂运动系统的预测模拟
- 批准号:
2153208 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Efficient Ensemble Methods for Predictive Fluid Flow Simulations Subject to Uncertainty
用于预测不确定性流体流动模拟的有效集成方法
- 批准号:
2120413 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Predictive simulations of molecules in membranes
膜中分子的预测模拟
- 批准号:
2600186 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Studentship














{{item.name}}会员




