Collaborative Research: Efficient Modeling of Incompressible Fluid Dynamics at Moderate Reynolds Numbers by Deconvolution LES Filters - Analysis and Applications to Hemodynamics
合作研究:通过解卷积 LES 滤波器对中等雷诺数下不可压缩流体动力学进行有效建模 - 血流动力学分析和应用
基本信息
- 批准号:1620384
- 负责人:
- 金额:$ 17.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computational fluid dynamics has emerged as a powerful tool to study the physiopathology of the cardiovascular system and for patient-specific Surgical Planning (SP) for cardiovascular diseases. Recently, clinical trials - the standard procedure for understanding diseases and assessing the impact of therapies and devices in the clinical practice - have been supported by a massive use of numerical simulations to improve the knowledge extracted from measured data, leading to Computer Aided Clinical Trials (CACT). For a large variety of pathologies involving the aorta - the major artery of the circulation - this requires to work with turbulent flows. While Direct Numerical Simulation in this context can be appropriate for a proof of concept, for the large number of patients involved in CACT and SP we need different numerical tools to provide the appropriate trade-off between accuracy and reliability needed by clinical applications and computational efficiency needed by tight deadlines. As CACT and SP are new emerging concepts in cardiovascular mathematics, an appropriate numerical modeling of turbulent physiological flows for clinical applications is now an unmet need that we intend to solve in this proposal.A possible way to limit the computational costs associated with Direct Numerical Simulations without sacrificing accuracy is to solve the flow average and model properly the effects of the small scales (not directly solved) at the medium and large scales (solved). We intend to investigate carefully new cutting-edge methods for disturbed flows based on Large Eddy Simulation (LES) Deconvolution filtering techniques with the ultimate goal of enabling practical use of numerical tools to improve knowledge extraction and clinical practice through CACT and SP. The main objective of this research is the development and the analysis of a robust and accurate LES based approach requiring no or minimal user's set-up for realistic incompressible flow problems with application to computational hemodynamics. We articulate the project in the following points: (a) Sensitivity analysis of key parameters involved in the method to understand their impact on the solution, leading to an automated parameter set-up through physical and numerical arguments. (b) Development and analysis of high-order in time methods, particularly for the computation of the pressure, with consequent improvement of the mass conservation properties. (c) Analysis of the impact of our LES approach on non-Dirichlet boundary conditions and the possible backflow stabilizing effects. We plan to test the method on both academic and real bioengineering problems. Finally, we plan to deliver a finite element open source library incorporating the findings of our research, available for CACT and SP.
计算流体动力学已成为研究心血管系统生理病理和心血管疾病患者特异性手术计划(SP)的有力工具。最近,临床试验——在临床实践中了解疾病和评估治疗和设备影响的标准程序——得到了大量使用数值模拟的支持,以改进从测量数据中提取的知识,从而导致了计算机辅助临床试验(CACT)。对于涉及主动脉(血液循环的主要动脉)的各种疾病,这需要与湍流一起工作。虽然在这种情况下,直接数值模拟可以适用于概念验证,但对于涉及CACT和SP的大量患者,我们需要不同的数值工具来提供临床应用所需的准确性和可靠性与紧迫期限所需的计算效率之间的适当权衡。由于CACT和SP是心血管数学中新兴的概念,因此临床应用的湍流生理流动的适当数值建模现在是一个未满足的需求,我们打算在本提案中解决。在不牺牲精度的情况下限制直接数值模拟的计算成本的一种可能方法是求解流量平均值,并在中尺度和大尺度(已求解)下适当地模拟小尺度(未直接求解)的影响。我们计划仔细研究基于大涡模拟(LES)反卷积滤波技术的扰动流的新前沿方法,最终目标是使数值工具的实际应用能够通过CACT和SP改善知识提取和临床实践。本研究的主要目标是开发和分析一种鲁棒和准确的基于LES的方法,不需要或只需要用户设置,以解决现实的不可压缩流动问题应用于计算血流动力学。我们在以下几点阐述了该项目:(a)对方法中涉及的关键参数进行敏感性分析,以了解它们对解决方案的影响,从而通过物理和数值参数自动设置参数。(b)发展和分析高阶时间方法,特别是计算压力的方法,从而改进质量守恒特性。(c)分析我们的LES方法对非狄利克雷边界条件的影响和可能的回流稳定效果。我们计划在学术和实际的生物工程问题上测试这种方法。最后,我们计划提供一个包含我们研究结果的有限元开源库,可用于CACT和SP。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Annalisa Quaini其他文献
Fusogenicity of cationic liposomes with phase-separating multicomponent lipid compositions
- DOI:
10.1016/j.bpj.2023.11.1883 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Yifei Wang;Yerbol Palzhanov;Dang Dang;Annalisa Quaini;Maxim Olshanskii;Sheereen Majd - 通讯作者:
Sheereen Majd
Human behavioral crowds review, critical analysis and research perspectives
- DOI:
10.1142/s0218202523500379 - 发表时间:
2023 - 期刊:
- 影响因子:
- 作者:
Nicola Bellomo;Jie Liao;Annalisa Quaini;Lucia Russo;Costantinos Siettos - 通讯作者:
Costantinos Siettos
Optimal transport-based displacement interpolation with data augmentation for reduced order modeling of nonlinear dynamical systems
基于最优传输的位移插值与数据增强用于非线性动力系统的降阶建模
- DOI:
10.1016/j.jcp.2025.113938 - 发表时间:
2025-06-15 - 期刊:
- 影响因子:3.800
- 作者:
Moaad Khamlich;Federico Pichi;Michele Girfoglio;Annalisa Quaini;Gianluigi Rozza - 通讯作者:
Gianluigi Rozza
Data-driven reduced order modeling of a two-layer quasi-geostrophic ocean model
- DOI:
10.1016/j.rineng.2024.103691 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:
- 作者:
Lander Besabe;Michele Girfoglio;Annalisa Quaini;Gianluigi Rozza - 通讯作者:
Gianluigi Rozza
Annalisa Quaini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Annalisa Quaini', 18)}}的其他基金
Conference: Power of Diversity in Uncertainty Quantification (PoD UQ)
会议:不确定性量化中多样性的力量 (PoD UQ)
- 批准号:
2403506 - 财政年份:2024
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Fusion-Inducing Liposomes for Efficient Intracellular Delivery: Continuum Models and Experiments
用于高效细胞内递送的融合诱导脂质体:连续体模型和实验
- 批准号:
1953535 - 财政年份:2020
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343606 - 财政年份:2024
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
- 批准号:
2346650 - 财政年份:2024
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
- 批准号:
2346651 - 财政年份:2024
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312886 - 财政年份:2023
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312884 - 财政年份:2023
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays
合作研究:FET:中:动态可重构原子阵列的高效编译
- 批准号:
2313084 - 财政年份:2023
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309547 - 财政年份:2023
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant