A Framework for Multiscale/Multiphysics Mathematical Modeling of Cerebral Aneurysm Rupture
脑动脉瘤破裂的多尺度/多物理场数学建模框架
基本信息
- 批准号:1620434
- 负责人:
- 金额:$ 23.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cerebral aneurysm (CA) is a diseased dilatation of an intracranial artery, and its rupture is the leading cause of subarachnoid bleeding. However, the mechanisms behind aneurysm formation, growth and rupture remain an enigma. While the current clinical technology cannot yet provide a lot of mechanistic details of these processes in vivo, many efforts have been devoted in modeling the biomechanics of the cerebral aneurysms. Specifically, numerical simulations have elucidated some of the physics associated with the arterial wall damage and aneurysm rupture. The proposed work aims to provide a multiphysics/multiscale mathematical model along with a numerical framework to understand the mechanism of cerebral aneurysm rupture. The new knowledge will be introduced into both graduate and undergraduate level courses. The resultant software will be ready for classroom use as friendly and free opensource routines for instructors and students.This project aims to develop a new methodology for addressing fundamental open questions in multiscale and multiphysics modeling of brain aneurysms, and to study the interactions between the arterial wall and the blood flow with an emphasis on simulating the rupture phenomena. To be specific, the computational domain is composed of three regions: the fluid (blood) simulated as incompressible Newtonian flow, the fracture solid (aneurysm fundus wall) modeled by the nonlocal peridynamic theory, and the solid (arterial wall) described by a viscoelastic model. These three subregions will be numerically coupled to each other with proper interface boundary conditions. In preliminary work, the PI has: (1) developed new schemes for fluid-structure interaction (FSI) to stabilize and accelerate the coupling between the fluid solver and the classical solid solver; (2) designed an efficient long-term integration method for fractional-order PDEs (FPDEs) and found that the fractional order might serve as an indicator for the aneurysm wall strength; (3) investigated the Dirichlet-Dirichlet boundary condition for the peridynamic-classical theory coupling. In the next three years, the PI will work on both theoretical and numerical aspects. For the theoretical part, new models will be addressed to describe the viscoelastic behavior of the arterial walls and to capture the material failure near the aneurysm fundus. Regarding the numerical effort, high-performance computational tools based on high-order continuous/discontinuous Galerkin methods will be developed, which could accurately simulate the new models as well as provide a coupling framework for problems composed of heterogeneous domains with multiscale/multiphysics dynamics. Technically, the PI will: (1) further validate the fractional-order PDE models that better describe the viscoelastic behavior of cerebral aneurysm walls; (2) for the first time develop two-component peridynamic theory for modeling the aneurysm rupture, and develop high-order numerical solvers for this model based on the discontinuous Galerkin method; (3) design partitioned approaches for coupling the 3D continuum formulations of peridynamics and classical theory, by investigating proper mathematical interface conditions directly derived from conservation laws. The coupling techniques the PI has investigated in preliminary work (FSI coupling) would also be adopted into the multiscale coupling problem here. This project is co-funded by the Computational Mathematics Program of the Division of Mathematical Sciences, the BioMAPS Initiative and the Biomedical Engineering program of the Division of Chemical, Bioengineering, Environmental and Transport Systems Division (CBET).
脑动脉瘤(CA)是一种颅内动脉的病理性扩张,其破裂是蛛网膜下腔出血的主要原因。然而,动脉瘤形成、生长和破裂背后的机制仍然是一个谜。虽然目前的临床技术还不能提供体内这些过程的许多机制细节,但在脑动脉瘤的生物力学建模方面已经付出了很多努力。具体地说,数值模拟已经阐明了与动脉壁损伤和动脉瘤破裂相关的一些物理问题。这项拟议的工作旨在提供一个多物理/多尺度的数学模型以及一个了解脑动脉瘤破裂机制的数值框架。新知识将被引入研究生和本科生课程。这个项目旨在开发一种新的方法,用于解决脑动脉瘤多尺度和多物理建模中的基本开放问题,并研究动脉壁和血流之间的相互作用,重点是模拟破裂现象。具体地说,计算区域由三个区域组成:模拟为不可压缩牛顿流动的流体(血液)、用非局部动力学理论模拟的破裂固体(动脉瘤底壁)和用粘弹性模型描述的固体(动脉壁)。这三个子区将在适当的界面边界条件下相互数值耦合。在前期工作中,PI开发了新的流体-结构相互作用(FSI)格式以稳定和加速流体求解器和经典固体求解器之间的耦合;(2)设计了一种有效的分数阶偏微分方程组(FPDE)的长期积分方法,发现分数阶可以作为动脉瘤壁强度的指标;(3)研究了动力学-经典理论耦合的Dirichlet-Dirichlet边界条件。在接下来的三年里,PI将在理论和数值两个方面进行工作。在理论部分,将提出新的模型来描述动脉壁的粘弹性行为,并捕捉动脉瘤底部附近的材料破坏。在数值方面,将开发基于高阶连续/不连续Galerkin方法的高性能计算工具,该工具可以准确地模拟新的模型,并为具有多尺度/多物理动力学的异质区域组成的问题提供耦合框架。在技术上,PI将:(1)进一步验证更好地描述脑动脉瘤壁粘弹性行为的分数阶PDE模型;(2)首次发展用于模拟动脉瘤破裂的两分量动力学理论,并基于不连续Galerkin方法开发该模型的高阶数值求解器;(3)通过研究直接从守恒定律推导出的适当的数学界面条件,设计耦合动力学和经典理论的3D连续介质公式的分区方法。PI在前期工作中研究的耦合技术(FSI耦合)也将被用于多尺度耦合问题。该项目由数学科学部的计算数学计划、BioMAPS计划和化学、生物工程、环境和运输系统司(CBET)的生物医学工程计划共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yue Yu其他文献
How to Cherry Pick the Bug Report for Better Summarization
如何精挑细选错误报告以获得更好的总结
- DOI:
10.1007/s10664-021-10008-2 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Haoran Liu;Yue Yu;Shanshan Li;Mingyang Geng;Xiaoguang Mao;Xiangke Liao - 通讯作者:
Xiangke Liao
Overexpression of IbPAL1 promotes chlorogenic acid biosynthesis in sweetpotato
IbPAL1 过表达促进甘薯绿原酸生物合成
- DOI:
10.1016/j.cj.2020.06.003 - 发表时间:
2020-07 - 期刊:
- 影响因子:0
- 作者:
Yang Yu;Yingjie Wang;Yue Yu;Peiyong Ma;Zhaodong Jia;Xiaoding Guo;Yizhi Xie;Xiaofeng Bian - 通讯作者:
Xiaofeng Bian
Regionalization study of maximum daily temperature based on grid data by an objective hybrid clustering approach
基于网格数据的客观混合聚类方法的日最高气温区域化研究
- DOI:
10.1016/j.jhydrol.2018.07.007 - 发表时间:
2018-09 - 期刊:
- 影响因子:6.4
- 作者:
Yue Yu;Quanxi Shao;Zhaohui Lin - 通讯作者:
Zhaohui Lin
Teaching children with autism to attend to socially relevant stimuli
教导自闭症儿童关注与社会相关的刺激
- DOI:
10.1016/j.rasd.2013.09.002 - 发表时间:
2013 - 期刊:
- 影响因子:2.5
- 作者:
Angela Persicke;Megan St. Clair;J. Tarbox;Adel C. Najdowski;Jennifer Ranick;Yue Yu;Yanicka L. de Nocker - 通讯作者:
Yanicka L. de Nocker
Epidemiological characteristics and methodological quality of meta-analyses on diabetes mellitus treatment: a systematic review.
糖尿病治疗荟萃分析的流行病学特征和方法学质量:系统评价。
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:5.8
- 作者:
Xin;V. Lam;Yue Yu;R. Ho;Yecheng Feng;C. H. Wong;B. Yip;K. Tsoi;Samuel Y. S. Wong;V. Chung - 通讯作者:
V. Chung
Yue Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yue Yu', 18)}}的其他基金
CAREER: A Local-Nonlocal Coupling Framework for Tissue Damage in Fluid-Structure Interaction
职业生涯:流固耦合中组织损伤的局部-非局部耦合框架
- 批准号:
1753031 - 财政年份:2018
- 资助金额:
$ 23.5万 - 项目类别:
Continuing Grant
相似海外基金
Multiscale, Multi-fidelity and Multiphysics Bayesian Neural Network (BNN) Machine Learning (ML) Surrogate Models for Modelling Design Based Accidents
用于基于事故建模设计的多尺度、多保真度和多物理场贝叶斯神经网络 (BNN) 机器学习 (ML) 替代模型
- 批准号:
2764855 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别:
Studentship
Computationally efficient multiphysics and multiscale modeling approaches applied to porous materials engineering
适用于多孔材料工程的计算高效的多物理场和多尺度建模方法
- 批准号:
DGECR-2022-00026 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别:
Discovery Launch Supplement
Computationally efficient multiphysics and multiscale modeling approaches applied to porous materials engineering
适用于多孔材料工程的计算高效的多物理场和多尺度建模方法
- 批准号:
RGPIN-2022-04639 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别:
Discovery Grants Program - Individual
Development of a multiscale multiphysics simulation toolset with uncertainty for nuclear safety assessment, design, and licensing of SMRs
开发具有不确定性的多尺度多物理场仿真工具集,用于 SMR 的核安全评估、设计和许可
- 批准号:
580447-2022 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别:
Alliance Grants
Research and Development of Numerical Methods of Multiphysics and Multiscale Modeling for Emerging Technology Applications and Designs
新兴技术应用和设计的多物理场和多尺度建模数值方法的研究和开发
- 批准号:
RGPIN-2018-05364 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别:
Discovery Grants Program - Individual
Multiphysics and multiscale modeling for the intensification of chemical engineering processes
用于强化化学工程过程的多物理场和多尺度建模
- 批准号:
RGPIN-2020-04510 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别:
Discovery Grants Program - Individual
SBIR Phase I: A fractional-order computational platform for the multiscale and multiphysics analysis of failure-critical systems
SBIR 第一阶段:用于故障关键系统的多尺度和多物理场分析的分数阶计算平台
- 批准号:
2212932 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别:
Standard Grant
Multiscale/Multiphysics Testing and Modelling of Cemented Paste Backfill-Rock Interface Behaviour and Application to the Design of Cemented Paste Backfill Structures
水泥浆回填-岩石界面行为的多尺度/多物理测试和建模及其在水泥浆回填结构设计中的应用
- 批准号:
RGPIN-2019-05078 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别:
Discovery Grants Program - Individual
Multiphysics and multiscale modelling for safe and feasible CO2 capture and storage
安全可行的二氧化碳捕获和储存的多物理场和多尺度建模
- 批准号:
EP/T033940/1 - 财政年份:2021
- 资助金额:
$ 23.5万 - 项目类别:
Research Grant
Development of prediction system for mechanical properties of multi-material structures by data assimilation and multiscale-multiphysics analysis
通过数据同化和多尺度多物理分析开发多材料结构力学性能预测系统
- 批准号:
21K03776 - 财政年份:2021
- 资助金额:
$ 23.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)