Development of a multiscale multiphysics simulation toolset with uncertainty for nuclear safety assessment, design, and licensing of SMRs
开发具有不确定性的多尺度多物理场仿真工具集,用于 SMR 的核安全评估、设计和许可
基本信息
- 批准号:580447-2022
- 负责人:
- 金额:$ 4.79万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this proposal is to develop an integrated software tool set for nuclear safety assessment that combines a physics-based computer modelling and simulation of advanced small modular reactors (SMRs) with a comprehensive quantification of all uncertainties that arise in the modelling. This will enable an end-to-end uncertainty quantification (UQ) and principled safety (accident) analysis, prediction, and decision-making framework for SMRs (and, more broadly, for the next-generation advanced nuclear reactor technologies based on non-light water coolants such as molten salt, liquid metal and gas that will need to be assessed, monitored and controlled throughout their life cycle). Incorporation of UQ in the large-scale scientific simulator developed in this proposal, consisting of the coupling of a computational fluid dynamics model with a systems code, is the key-enabling technology that will provide the reliability, resilience, and trust for safety/mission-critical assessments in those settings that can potentially involve catastrophic consequences. Inclusion of information with respect to whether various figures of merit used in the safety evaluation of SMRs are confident or uncertain will permit more informed (science-based) decisions to be made by decision makers concerning the certification and licensing of advanced SMRs in Canada. As a consequence, this is especially beneficial for Canada's clean energy future as SMRs can produce a large amount of clean energy so this potentially disruptive technology must be one of the solutions to a carbon-free future path for Canada. Moreover, the small footprint of SMRs implies that they can be sited at remote locations and can be installed into the existing grid system or remotely off grid (e.g., in remotely indigenous communities) and, as a result, is an enabling technology for a clean energy future in Canada.
这项建议的目标是开发一套核安全评估综合软件工具,将先进的小型模块化反应堆的基于物理的计算机建模和模拟与对建模中出现的所有不确定性进行全面量化相结合。这将为SMR(以及更广泛地说,基于熔盐、液态金属和气体等非轻水冷却剂的下一代先进核反应堆技术,需要在其整个生命周期内进行评估、监测和控制)提供端到端不确定性量化和原则性安全(事故)分析、预测和决策框架。将UQ纳入本提案中开发的大型科学模拟器,包括计算流体动力学模型和系统代码的耦合,是关键的使能技术,将在那些可能涉及灾难性后果的环境中为安全/关键任务评估提供可靠性、复原力和信任。纳入关于SMR安全评估中使用的各种优值系数是可信的还是不确定的信息,将使决策者能够就加拿大高级SMR的认证和许可做出更明智的(基于科学的)决定。因此,这对加拿大的清洁能源未来尤其有利,因为SMR可以生产大量的清洁能源,因此这种潜在的颠覆性技术必须是加拿大未来无碳道路的解决方案之一。此外,SMR的占地面积很小,这意味着它们可以安装在偏远地点,可以安装到现有的电网系统中或远程脱网(例如,在偏远的土著社区),因此是加拿大未来清洁能源的一项使能技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lien, FueSangFS其他文献
Lien, FueSangFS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
热力耦合方程组的并行多尺度算法
- 批准号:11301329
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
生物膜式反应器内复杂热物理参数动态场分布的多尺度实时测量方法研究
- 批准号:50876120
- 批准年份:2008
- 资助金额:36.0 万元
- 项目类别:面上项目
天然生物材料的多尺度力学与仿生研究
- 批准号:10732050
- 批准年份:2007
- 资助金额:200.0 万元
- 项目类别:重点项目
ABR颗粒污泥的多尺度结构形态、理化特征与分子生态学解析
- 批准号:50578012
- 批准年份:2005
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Multiscale, Multi-fidelity and Multiphysics Bayesian Neural Network (BNN) Machine Learning (ML) Surrogate Models for Modelling Design Based Accidents
用于基于事故建模设计的多尺度、多保真度和多物理场贝叶斯神经网络 (BNN) 机器学习 (ML) 替代模型
- 批准号:
2764855 - 财政年份:2022
- 资助金额:
$ 4.79万 - 项目类别:
Studentship
Computationally efficient multiphysics and multiscale modeling approaches applied to porous materials engineering
适用于多孔材料工程的计算高效的多物理场和多尺度建模方法
- 批准号:
DGECR-2022-00026 - 财政年份:2022
- 资助金额:
$ 4.79万 - 项目类别:
Discovery Launch Supplement
Computationally efficient multiphysics and multiscale modeling approaches applied to porous materials engineering
适用于多孔材料工程的计算高效的多物理场和多尺度建模方法
- 批准号:
RGPIN-2022-04639 - 财政年份:2022
- 资助金额:
$ 4.79万 - 项目类别:
Discovery Grants Program - Individual
SBIR Phase I: A fractional-order computational platform for the multiscale and multiphysics analysis of failure-critical systems
SBIR 第一阶段:用于故障关键系统的多尺度和多物理场分析的分数阶计算平台
- 批准号:
2212932 - 财政年份:2022
- 资助金额:
$ 4.79万 - 项目类别:
Standard Grant
Multiphysics and multiscale modeling for the intensification of chemical engineering processes
用于强化化学工程过程的多物理场和多尺度建模
- 批准号:
RGPIN-2020-04510 - 财政年份:2022
- 资助金额:
$ 4.79万 - 项目类别:
Discovery Grants Program - Individual
Research and Development of Numerical Methods of Multiphysics and Multiscale Modeling for Emerging Technology Applications and Designs
新兴技术应用和设计的多物理场和多尺度建模数值方法的研究和开发
- 批准号:
RGPIN-2018-05364 - 财政年份:2022
- 资助金额:
$ 4.79万 - 项目类别:
Discovery Grants Program - Individual
Multiscale/Multiphysics Testing and Modelling of Cemented Paste Backfill-Rock Interface Behaviour and Application to the Design of Cemented Paste Backfill Structures
水泥浆回填-岩石界面行为的多尺度/多物理测试和建模及其在水泥浆回填结构设计中的应用
- 批准号:
RGPIN-2019-05078 - 财政年份:2022
- 资助金额:
$ 4.79万 - 项目类别:
Discovery Grants Program - Individual
Multiphysics and multiscale modelling for safe and feasible CO2 capture and storage
安全可行的二氧化碳捕获和储存的多物理场和多尺度建模
- 批准号:
EP/T033940/1 - 财政年份:2021
- 资助金额:
$ 4.79万 - 项目类别:
Research Grant
Development of prediction system for mechanical properties of multi-material structures by data assimilation and multiscale-multiphysics analysis
通过数据同化和多尺度多物理分析开发多材料结构力学性能预测系统
- 批准号:
21K03776 - 财政年份:2021
- 资助金额:
$ 4.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Efficient and Accurate Local Time-Stepping Algorithms for Multiscale Multiphysics Systems
职业:多尺度多物理系统的高效、准确的局部时间步进算法
- 批准号:
2041884 - 财政年份:2021
- 资助金额:
$ 4.79万 - 项目类别:
Continuing Grant














{{item.name}}会员




