Gauge Fields, Geometry, and Strings

规范字段、几何图形和字符串

基本信息

  • 批准号:
    1620637
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

This award funds the research activities of Professor Christopher Beasley at Northeastern University.According to modern particle physics, three of the four fundamental forces in Nature are expressed mathematically within the framework of certain types of theories known as gauge theories. These three forces are the electromagnetic force, the weak nuclear force (which is responsible for radioactive nuclear decays), and the strong nuclear force (which holds atomic nuclei together). The fourth fundamental force, gravity, stands as the notable exception. The discovery of gauge theories is undoubtably one of the great scientific achievements of the 20th century, crucial not only for our modern understanding of elementary particle physics but also for vast swaths of modern geometry and topology. Yet many foundational questions about the dynamics of gauge theory remain poorly understood. These questions have bearing on such topics as the structure of the proton, the character of dark matter and dark energy, or even the mechanism for high-temperature superconductivity. Professor Beasley will conduct research to develop new mathematical methods and tools, inspired by string theory, for analyzing a special class of gauge theories defined in two spatial dimensions. These gauge theories preserve supersymmetry, which relates particles of different spins to each other and is among the possible extensions of the Standard Model now being tested in experiments at the Large Hadron Collider (LHC). Research in this area thus advances the national interest by promoting the progress of science in one of its most fundamental directions: the discovery and understanding of new physical laws. The project will also have significant broader impacts. Substantial portions of the project involve joint work between Professor Beasley and his graduate students. The project thereby serves to train the next generation of mathematical physicists in the methods of quantum field theory and string theory, as well as to disseminate those methods more broadly throughout the mathematical community. Professor Beasley will also give a series of popular scientific talks for first-year undergraduates, will supervise junior and senior mathematics majors in a Research Capstone, and will videotape his lectures in a graduate course on quantum field theory for mathematicians.More technically, Professor Beasley will study perturbative and non-perturbative properties of supersymmetric Wilson loop operators associated to Legendrian knots in contact three-manifolds. He will investigate a relation between these operators and infinite-dimensional symmetry algebras known to occur in two-dimensional quantum field theory, as well as a new localization method for Feynman integrals. Professor Beasley will also construct a novel, time-dependent topological supersymmetry on three-manifolds which fiber over the circle. These ingredients will be applied to perform a variety of exact computations in gauge theory. The project invokes deep notions from contact geometry and topology, and so will establish further interdisciplinary connections between theoretical physics and mathematics.
该奖项资助了东北大学克里斯托弗·比斯利教授的研究活动。根据现代粒子物理学,自然界的四种基本力中有三种是在某种被称为规范理论的理论框架内用数学方法表达的。这三种力分别是电磁力、弱核力(导致放射性核衰变)和强核力(将原子核聚集在一起)。第四种基本力,重力,是一个明显的例外。规范理论的发现无疑是20世纪最伟大的科学成就之一,它不仅对我们对基本粒子物理学的现代理解至关重要,而且对现代几何学和拓扑学的广大领域也至关重要。然而,关于规范理论动力学的许多基本问题仍然知之甚少。这些问题涉及到质子的结构、暗物质和暗能量的性质,甚至高温超导的机理等问题。Beasley教授将在弦理论的启发下开展研究,开发新的数学方法和工具,用于分析在两个空间维度上定义的特殊规范理论。这些规范理论保持了超对称性,它将不同自旋的粒子相互联系起来,是标准模型的可能扩展之一,目前正在大型强子对撞机(LHC)的实验中进行测试。因此,这一领域的研究通过促进科学在其最基本的方向之一的进步来促进国家利益:发现和理解新的物理定律。该项目还将产生更广泛的重大影响。这个项目的很大一部分涉及比斯利教授和他的研究生的共同工作。因此,该项目有助于培养下一代量子场论和弦理论方法的数学物理学家,并在整个数学界更广泛地传播这些方法。Beasley教授还将为一年级的本科生做一系列流行的科学讲座,指导三年级和四年级的数学专业学生进行一项研究,并将他在一门面向数学家的量子场论研究生课程上的讲座录下来。更技术性的是,Beasley教授将研究接触三流形中与Legendrian结相关的超对称Wilson环算子的微扰和非微扰性质。他将研究这些算子与二维量子场论中已知的无限维对称代数之间的关系,以及费曼积分的一种新的局部化方法。Beasley教授还将在三流形上构建一种新颖的、与时间相关的拓扑超对称结构。这些成分将应用于规范理论中的各种精确计算。该项目涉及接触几何和拓扑学的深层概念,因此将在理论物理和数学之间建立进一步的跨学科联系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Beasley其他文献

Correction to: Oxford House Residents’ Attitudes Toward Medication Assisted Treatment Use in Fellow Residents
  • DOI:
    10.1007/s10597-018-0265-5
  • 发表时间:
    2018-03-24
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    John M. Majer;Christopher Beasley;Emily Stecker;Ted J. Bobak;Joshua Norris;Hai Minh Nguyen;Maisie Ogata;Jordana Siegel;Elzbieta Wiedbusch;Isabel Dovale;Noah Gelfman;Sarah Callahan;Leonard A. Jason
  • 通讯作者:
    Leonard A. Jason
Magnetic resonance imaging–guided focused ultrasound thalamotomy for essential tremor in a patient with von Willebrand disease: perioperative optimization for patients with coagulopathies. Illustrative case
磁共振成像引导聚焦超声丘脑切除术治疗冯·维勒布兰德病患者的特发性震颤:凝血病患者的围手术期优化。
  • DOI:
    10.3171/case23766
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Caroline Folz;Andreas Seas;Fadzai Chinyengetere;Christopher Beasley;Adam Harris;Charity I. Oyedeji;Thomas L Ortel;Bhavya R Shah;Shivanand Lad;Stephen C Harward
  • 通讯作者:
    Stephen C Harward
Optimization of non-endorectal prostate MR image quality using PI-QUAL: A multidisciplinary team approach.
使用 PI-QUAL 优化非直肠内前列腺 MR 图像质量:多学科团队方法。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    S. Robertson;Erica Owenby;Christopher Beasley;Lisa K Wall;Bradley Gray;Issack Boru;K. Kalisz;Danielle E. Kruse;D. Marin;Sarah P Thomas;Erin B Macdonald;A. Purysko;Rajan T. Gupta
  • 通讯作者:
    Rajan T. Gupta

Christopher Beasley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

手性Salen配合物催化与底物诱导的不对称多组分Kabachnik-Fields反应
  • 批准号:
    21162008
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Geometry of Gravitational Fields
引力场的几何
  • 批准号:
    23KK0048
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Algebraic geometry over arbitrary (in particular, non-algebraically closed) fields
任意(特别是非代数闭)域上的代数几何
  • 批准号:
    2886391
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Studentship
Probability measures in infinite dimensional spaces: random paths, random fields and random geometry
无限维空间中的概率度量:随机路径、随机场和随机几何
  • 批准号:
    RGPIN-2015-05968
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Grants Program - Individual
Cohomology, Function Fields and Anabelian Geometry
上同调、函数域和阿贝尔几何
  • 批准号:
    RGPIN-2019-04762
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Grants Program - Individual
Global geometry of families of polynomial vector fields
多项式向量场族的全局几何
  • 批准号:
    RGPIN-2020-05145
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis and Geometry of Random Fields Related to Stochastic Partial Differential Equations and Random Matrices
与随机偏微分方程和随机矩阵相关的随机场的分析和几何
  • 批准号:
    2153846
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Fields in Tensor-Triangular Geometry and Applications
张量三角形几何领域及其应用
  • 批准号:
    2153758
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Arithmetic Geometry and Dynamics over Finite Fields
有限域上的算术几何和动力学
  • 批准号:
    557298-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Postdoctoral Fellowships
Geometry of Moduli spaces of Connections and Higgs fields and their Applications
联结模空间和希格斯场的几何及其应用
  • 批准号:
    22K18669
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Evolution equations in geometry and related fields
几何及相关领域的演化方程
  • 批准号:
    2104349
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了