Analysis and Geometry of Random Fields Related to Stochastic Partial Differential Equations and Random Matrices
与随机偏微分方程和随机矩阵相关的随机场的分析和几何
基本信息
- 批准号:2153846
- 负责人:
- 金额:$ 22.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project is concerned with the development of an analytic and geometric theory of random fields that arise from stochastic partial differential equations (SPDEs) and random matrices. Special emphasis is placed on vector-valued and matrix-valued random fields that play a central role in various areas of pure and applied mathematics, mathematical physics, astronomy, bio-imaging, mathematical oceanography, and statistics. The Principal Inestigator (PI) will develop probabilistic, analytic, and geometric tools for studying vector-valued and matrix-valued random fields that will lead to a deeper understanding of random fields that arise from systems of SPDEs and random matrices. These tools will have sufficient novelty to open new research areas, solve a number of open problems in the theory of SPDEs, random matrices, and related random fields. Moreover, the proposed activities will also help to train graduate students and to develop their careers in the mathematical and statistical sciences. It is significant and challenging to characterize the fine analytic and geometric structures of vector-valued and matrix-valued random fields. In the past investigations, the PI has established a series of results on Gaussian and, more generally, infinitely divisible random fields, and the solutions of SPDEs. Together with his collaborators, the PI has developed fractal geometry and potential theory for Gaussian random fields, additive Lévy processes, solutions to SPDEs, and used them to resolve several outstanding open problems in non-Markovian Gaussian and stable random fields, Lévy processes, and the theory of SPDEs. The PI plans to continue his investigation of precise quantitative connections between vector-valued and matrix-valued random fields, SPDEs, potential theory, and the geometry of random fractals. The proposed research will ultimately yield novel insights into the understanding of vector-valued and matrix-valued random fields, SPDEs, and random matrices. The expected results will not only contribute to the theories of random fields, SPDEs, and random matrices but also promote their applicability in mathematics, mathematical physics, and in other scientific areas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目致力于发展由随机偏微分方程组(SPDEs)和随机矩阵产生的随机场的解析和几何理论。特别强调的是矢量值和矩阵值随机场,它们在纯数学和应用数学、数学物理、天文学、生物成像、数学海洋学和统计学的各个领域中发挥着核心作用。首席调查员(PI)将开发概率、分析和几何工具来研究向量值和矩阵值随机场,这将导致对由SPDEs和随机矩阵系统产生的随机场有更深的理解。这些工具将具有足够的新颖性,以开辟新的研究领域,解决SPDEs理论、随机矩阵和相关随机域中的一些公开问题。此外,拟议的活动还将有助于培养研究生并发展他们在数学和统计科学方面的职业生涯。刻画向量值和矩阵值随机场的精细解析和几何结构具有重要意义和挑战性。在过去的研究中,PI已经建立了一系列关于高斯和更一般的无限可分随机场的结果,以及SPDEs的解。PI与他的合作者一起发展了关于高斯随机场、加性Lévy过程的分形几何和位势理论,以及SPDEs的解,并用它们解决了非马尔科夫高斯和稳定随机场、Lévy过程和SPDEs理论中的几个未决问题。PI计划继续研究向量值和矩阵值随机场、SPDEs、位势理论和随机分形几何之间的精确定量联系。这项拟议的研究最终将对理解向量值和矩阵值随机场、SPDEs和随机矩阵产生新的见解。预期的结果不仅将有助于随机场、SPDEs和随机矩阵的理论,还将促进它们在数学、数学物理和其他科学领域的适用性。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yimin Xiao其他文献
Calculation of transient heat transfer through the envelope of an underground cavern using Z-transfer coefficient method
使用 Z 传递系数法计算地下洞穴围护结构的瞬态传热
- DOI:
10.1016/j.enbuild.2012.01.040 - 发表时间:
2012-05 - 期刊:
- 影响因子:6.7
- 作者:
Yimin Xiao;Xichen Liu;Rongrong Zhang - 通讯作者:
Rongrong Zhang
Lower functions and Chung's LILs of the generalized fractional Brownian motion
广义分数布朗运动的下限函数和 Chung 的 LIL
- DOI:
10.1016/j.jmaa.2022.126320 - 发表时间:
2021-05 - 期刊:
- 影响因子:1.3
- 作者:
Ran Wang;Yimin Xiao - 通讯作者:
Yimin Xiao
Hausdorff measure of the graph of fractional Brownian motion
- DOI:
10.1017/s0305004197001783 - 发表时间:
1997-11 - 期刊:
- 影响因子:0.8
- 作者:
Yimin Xiao - 通讯作者:
Yimin Xiao
Propagation of singularities for the stochastic wave equation
随机波动方程的奇点传播
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:1.4
- 作者:
C. Lee;Yimin Xiao - 通讯作者:
Yimin Xiao
Strong Local Nondeterminism and Sample Path Properties of Gaussian Random Fields
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Yimin Xiao - 通讯作者:
Yimin Xiao
Yimin Xiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yimin Xiao', 18)}}的其他基金
Conference: Workshop on Stochastic Analysis, Random Fields, and Applications
会议:随机分析、随机场和应用研讨会
- 批准号:
2309847 - 财政年份:2023
- 资助金额:
$ 22.05万 - 项目类别:
Standard Grant
Seminar on Stochastic Processes (SSP) 2020
随机过程研讨会(SSP)2020
- 批准号:
1951535 - 财政年份:2020
- 资助金额:
$ 22.05万 - 项目类别:
Standard Grant
Collaborative Research: Asymptotic Geometry and Analysis of Stochastic Partial Differential Equations
合作研究:渐近几何与随机偏微分方程分析
- 批准号:
1855185 - 财政年份:2019
- 资助金额:
$ 22.05万 - 项目类别:
Standard Grant
Collaborative Research: Fractals, Multifractals, and Stochastic Partial Differential Equations
合作研究:分形、多重分形和随机偏微分方程
- 批准号:
1607089 - 财政年份:2016
- 资助金额:
$ 22.05万 - 项目类别:
Standard Grant
Estimation, Prediction, and Extremes of Multivariate Random Fields
多元随机场的估计、预测和极值
- 批准号:
1612885 - 财政年份:2016
- 资助金额:
$ 22.05万 - 项目类别:
Standard Grant
Extreme Value Theory and Fixed-Domain Asymptotics of Multivariate Random Fields
多元随机场的极值理论和定域渐近
- 批准号:
1309856 - 财政年份:2013
- 资助金额:
$ 22.05万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Analysis of Stochastic Partial Differential Equations
NSF/CBMS 数学科学区域会议 - 随机偏微分方程分析
- 批准号:
1241389 - 财政年份:2012
- 资助金额:
$ 22.05万 - 项目类别:
Standard Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Geometry and Integrability of Random Processes
随机过程的几何和可积性
- 批准号:
2346685 - 财政年份:2023
- 资助金额:
$ 22.05万 - 项目类别:
Standard Grant
Random plane geometry
随机平面几何形状
- 批准号:
RGPIN-2022-04786 - 财政年份:2022
- 资助金额:
$ 22.05万 - 项目类别:
Discovery Grants Program - Individual
Probability measures in infinite dimensional spaces: random paths, random fields and random geometry
无限维空间中的概率度量:随机路径、随机场和随机几何
- 批准号:
RGPIN-2015-05968 - 财政年份:2022
- 资助金额:
$ 22.05万 - 项目类别:
Discovery Grants Program - Individual
Geometry, Arithmeticity, and Random Walks on Discrete and Dense Subgroups of Lie Groups
李群的离散和稠密子群上的几何、算术和随机游走
- 批准号:
2203867 - 财政年份:2022
- 资助金额:
$ 22.05万 - 项目类别:
Standard Grant
Geometry and Integrability of Random Processes
随机过程的几何和可积性
- 批准号:
2153661 - 财政年份:2022
- 资助金额:
$ 22.05万 - 项目类别:
Standard Grant
Pluripotential Theory and Random Geometry on Compact Complex Manifolds
紧复流形上的多势理论和随机几何
- 批准号:
2154273 - 财政年份:2022
- 资助金额:
$ 22.05万 - 项目类别:
Standard Grant
Problems in Randomized Algorithms, Random Graphs, and Computational Geometry
随机算法、随机图和计算几何中的问题
- 批准号:
RGPIN-2019-04269 - 财政年份:2022
- 资助金额:
$ 22.05万 - 项目类别:
Discovery Grants Program - Individual
Large deviations in random planar geometry
随机平面几何形状的大偏差
- 批准号:
572476-2022 - 财政年份:2022
- 资助金额:
$ 22.05万 - 项目类别:
University Undergraduate Student Research Awards
Random Noncommutative Geometry
随机非交换几何
- 批准号:
570071-2022 - 财政年份:2022
- 资助金额:
$ 22.05万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral