Harnessing Symmetry-Protected Topological Orders for Quantum Computation

利用对称保护的拓扑序进行量子计算

基本信息

  • 批准号:
    1620651
  • 负责人:
  • 金额:
    $ 19.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-15 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Computers have become ubiquitous and indispensable in modern society, and the search for new and more powerful computers is constant. One avenue of exploration is to develop computation based on using quantum information processing (QIP). QIP takes advantage of quantum states, for instance spins of electrons, to encode information. Quantum effects such as "superposition" and "entanglement" enable QIP devices to process information with shades of gray beyond the conventional black-or-white (so-called 0-or-1) logic, and to attain drastic improvements over conventional devices. However, there are two major challenges to achieving the goal of a QIP-based system. One is to find ways to scale up QIP devices, building on recent experiments with small numbers of quantum bits. The other challenge is to discover more examples, and whole categories, of informational tasks for which QIP devices surpass conventional devices. The goal of this project is to address these key issues using ideas from the study of many-body quantum physics phenomena such as superconductivity and magnetism, as, for example, how frustrated quantum spin systems that exhibit exotic magnetism also possess intrinsic capability as a quantum computer. In more general terms, the project will explore ways to use macroscopic quantum order to obtain some quantum advantage in computation and simulation. This research will contribute to the knowledge base of quantum information science and to the training of future scientists in this highly interdisciplinary and rapidly expanding field.The framework of measurement-based quantum computation (MQC) is a convenient way to study the origin of quantum advantages such as quantum speed-up in computation. MQC needs entangled states as a resource. This project will examine how certain types of macroscopic entanglement which are naturally found in quantum spin liquid phases of frustrated quantum spin systems called symmetry-protected topological orders (SPTO) can be used as a resource for MQC. This project will explore how a higher level of entanglement with more intrinsic quantum-gate complexity (Clifford hierarchy) is available by using higher-dimensional SPTO. The new entanglement by 2D SPTO has several features which are not available by conventional universal entanglement (like the cluster state whose SPTO is of a 1D nature), and is in contrast capable of universal quantum computation even by simplest single-spin X, Y, and Z measurements. This project takes advantage of this concrete connection between macroscopic quantum orders and quantum complexity to approach the key issues about scalability and non-classical complexity in quantum computation and simulation. Thus it builds connections between two research fields: quantum information science and quantum many-body physics.
计算机在现代社会中已经变得无处不在和不可或缺,并且对新的和更强大的计算机的搜索是不断的。 探索的途径之一是开发基于量子信息处理(QIP)的计算。QIP利用量子态,例如电子的自旋,来编码信息。诸如“叠加”和“纠缠”的量子效应使得QIP设备能够处理具有超出传统的黑或白色(所谓的0或1)逻辑的灰色阴影的信息,并且相对于传统设备获得显著的改进。然而,实现基于QIP的系统的目标存在两个主要挑战。一个是在最近的少量量子比特实验的基础上,找到扩大QIP设备的方法。另一个挑战是发现更多的例子,以及QIP设备超越传统设备的信息任务的整个类别。该项目的目标是利用超导和磁性等多体量子物理现象研究中的思想来解决这些关键问题,例如,表现出奇异磁性的受挫折量子自旋系统如何也具有作为量子计算机的内在能力。更一般地说,该项目将探索如何使用宏观量子序在计算和模拟中获得一些量子优势。这项研究将有助于建立量子信息科学的知识基础,并有助于培养这一高度跨学科和迅速扩展的领域的未来科学家。基于测量的量子计算(MQC)框架是研究量子优势起源的一种方便方法,例如量子加速计算。 MQC需要纠缠态作为资源。 该项目将研究如何将某些类型的宏观纠缠自然地发现在受挫折的量子自旋系统的量子自旋液相中,称为受保护的拓扑序(SPTO),可以用作MQC的资源。 这个项目将探索如何通过使用更高维的SPTO获得更高层次的纠缠和更内在的量子门复杂性(Clifford层次)。2D SPTO的新纠缠具有传统的通用纠缠所不具备的几个特征(如SPTO具有1D性质的簇态),并且相比之下,即使通过最简单的单自旋X,Y和Z测量也能够进行通用量子计算。该项目利用宏观量子序与量子复杂性之间的这种具体联系来探讨量子计算和模拟中有关可扩展性和非经典复杂性的关键问题。因此,它建立了两个研究领域之间的联系:量子信息科学和量子多体物理学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Akimasa Miyake其他文献

Universal resources for measurement-based quantum computation.
基于测量的量子计算的通用资源。
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    M. Van den Nest;Akimasa Miyake;W. Dür;H. Briegel
  • 通讯作者:
    H. Briegel
Hardness results for decoding the surface code with Pauli noise
使用泡利噪声解码表面代码的硬度结果
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alex Fischer;Akimasa Miyake
  • 通讯作者:
    Akimasa Miyake

Akimasa Miyake的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Akimasa Miyake', 18)}}的其他基金

Quantum Computational Advantage via Contextual Measurements
通过上下文测量获得量子计算优势
  • 批准号:
    2310567
  • 财政年份:
    2023
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Standard Grant
EAGER-QAC-QSA: Variational quantum algorithms for transcorrelated electronic-structure Hamiltonians
EAGER-QAC-QSA:互相关电子结构哈密顿量的变分量子算法
  • 批准号:
    2037832
  • 财政年份:
    2020
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Standard Grant
Symmetry, Geometry, and Topology of Quantum Many-Body States for Quantum Computation
用于量子计算的量子多体态的对称性、几何和拓扑
  • 批准号:
    1915011
  • 财政年份:
    2019
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Standard Grant
Taming Quantum Many-Body Systems for Quantum Information
驯服量子多体系统以获取量子信息
  • 批准号:
    1314955
  • 财政年份:
    2013
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于级联环形微腔PT-Symmetry效应的芯片级全光开关
  • 批准号:
    61675185
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Symmetry Protected and Topological Phases in Quantum Many Body Systems
量子多体系统中的对称保护相和拓扑相
  • 批准号:
    RGPIN-2018-05136
  • 财政年份:
    2022
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Discovery Grants Program - Individual
Topological Invariants of Symmetry-Protected Topological Phases with Time-Reversal Symmetry
具有时间反演对称性的保对称拓扑相的拓扑不变量
  • 批准号:
    516769-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Symmetry Protected and Topological Phases in Quantum Many Body Systems
量子多体系统中的对称保护相和拓扑相
  • 批准号:
    RGPIN-2018-05136
  • 财政年份:
    2021
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Discovery Grants Program - Individual
Symmetry-protected spin dynamics in ferroelectric spin device
铁电自旋器件中对称保护的自旋动力学
  • 批准号:
    2031692
  • 财政年份:
    2020
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Standard Grant
Topological Invariants of Symmetry-Protected Topological Phases with Time-Reversal Symmetry
具有时间反演对称性的保对称拓扑相的拓扑不变量
  • 批准号:
    516769-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Symmetry Protected and Topological Phases in Quantum Many Body Systems
量子多体系统中的对称保护相和拓扑相
  • 批准号:
    RGPIN-2018-05136
  • 财政年份:
    2020
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Discovery Grants Program - Individual
Symmetry protected topological states in 1D spin systems
一维自旋系统中对称性保护的拓扑态
  • 批准号:
    553763-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Symmetry Protected and Topological Phases in Quantum Many Body Systems
量子多体系统中的对称保护相和拓扑相
  • 批准号:
    RGPIN-2018-05136
  • 财政年份:
    2019
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Discovery Grants Program - Individual
Harnessing the Computational Power of Symmetry Protected Phases of Matter with Measurement Based Quantum Computation
通过基于测量的量子计算来利用物质对称保护相的计算能力
  • 批准号:
    505006-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Topological Invariants of Symmetry-Protected Topological Phases with Time-Reversal Symmetry
具有时间反演对称性的保对称拓扑相的拓扑不变量
  • 批准号:
    516769-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 19.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了