EAGER-QAC-QSA: Variational quantum algorithms for transcorrelated electronic-structure Hamiltonians
EAGER-QAC-QSA:互相关电子结构哈密顿量的变分量子算法
基本信息
- 批准号:2037832
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Miyake of the Center for Quantum Information and Control at the University of New Mexico is supported by an award from the Chemical Theory, Models, and Computational Methods program in the Division of Chemistry, to study new designs of simulation and algorithms for quantum computing. Quantum computers are promising to advance computational power and provide unmatched advantages in code breaking and scientific simulations in fields such as quantum chemistry and materials science. Quantum computing has progressed rapidly in recent years, and the hardware development is nearing a level of sophistication which could allow a proof-of-principle demonstration of quantum advantages. Miyake’s research team develops methods of variational optimizations to solve the energetic configurations of electrons, as they are of fundamental importance in physics, chemistry, and material science. The project contributes to the knowledge base of quantum information science and its cross-fertilization with different research fields such as quantum chemistry and material science. It also advances the objectives of two of 10 Big Ideas for Future NSF Investments: “The Quantum Leap: Leading the Next Quantum Revolution” and “Growing Convergent Research at NSF”. In order to inspire and train undergraduate and graduate students from the departments of chemistry and material science, a tutorial session on quantum computation and chemistry is arranged in conjunction with the Southwest Quantum Information and Technology workshop.The electronic-structure Hamiltonians, made of the kinetic energies and Coulomb interactions of electrons, are fundamental in physics, quantum chemistry, and material science. It is highly desirable to understand how a quantum computer could provide practical speed-up for the “strongly-correlated” problems major classical algorithms currently struggle. In the near term, hybrid quantum-classical approaches, such as variational optimizations, are particularly promising, as they utilize a quantum computer only for essential parts of computation and utilize fully classical side-computers to boost the overall computational performance. A major challenge in the variational methods is how to set variational parameters in an effective way and satisfy physical constraints at the same time. The so-called Jastrow form to characterize dynamical correlation is empirically successful to fulfill the Coulomb cusp condition originated from electrons’ coalescence. However, it is not straightforward to encode as quantum ansatz states as it breaks unitarity. To this end, by modifying the electronic-structure Hamiltonians under a similarity transformation of the Jastrow term, Miyake’s research team develops and analyzes variational quantum algorithms based on this so-called transcorrelated Hamiltonians.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新墨西哥大学量子信息与控制中心的Miyake博士获得了化学系化学理论、模型和计算方法项目的奖励,研究量子计算的模拟和算法的新设计。量子计算机有望提高计算能力,并在量子化学和材料科学等领域的密码破译和科学模拟方面提供无与伦比的优势。近年来,量子计算发展迅速,硬件的发展已经接近一个复杂的水平,可以允许量子优势的原理证明。Miyake的研究团队开发了变分优化方法来解决电子的能量配置,因为它们在物理,化学和材料科学中具有重要的基础意义。该项目有助于建立量子信息科学知识库,并与量子化学、材料科学等不同研究领域进行交叉施肥。它还推进了NSF未来投资的10大构想中的两个目标:“量子飞跃:引领下一次量子革命”和“在NSF发展融合研究”。为了激励和培养化学系和材料科学系的本科生和研究生,我校与西南量子信息与技术研讨会联合举办了量子计算与化学辅导班。由电子的动能和库仑相互作用构成的电子结构哈密顿量是物理学、量子化学和材料科学的基础。我们非常希望了解量子计算机如何为目前主要经典算法所面临的“强相关”问题提供实际的加速。在短期内,混合量子-经典方法,如变分优化,特别有前途,因为它们只利用量子计算机进行计算的基本部分,并利用完全经典的侧计算机来提高整体计算性能。变分方法的一个主要挑战是如何有效地设置变分参数,同时满足物理约束。用Jastrow形式来表征动力学相关性,在经验上成功地满足了由电子聚并引起的库仑尖点条件。然而,将其编码为量子态并不简单,因为它破坏了统一性。为此,Miyake的研究小组通过在Jastrow项的相似变换下修改电子结构哈密顿量,开发并分析了基于这种所谓的跨相关哈密顿量的变分量子算法。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Akimasa Miyake其他文献
Universal resources for measurement-based quantum computation.
基于测量的量子计算的通用资源。
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:8.6
- 作者:
M. Van den Nest;Akimasa Miyake;W. Dür;H. Briegel - 通讯作者:
H. Briegel
Hardness results for decoding the surface code with Pauli noise
使用泡利噪声解码表面代码的硬度结果
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Alex Fischer;Akimasa Miyake - 通讯作者:
Akimasa Miyake
Akimasa Miyake的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Akimasa Miyake', 18)}}的其他基金
Quantum Computational Advantage via Contextual Measurements
通过上下文测量获得量子计算优势
- 批准号:
2310567 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Symmetry, Geometry, and Topology of Quantum Many-Body States for Quantum Computation
用于量子计算的量子多体态的对称性、几何和拓扑
- 批准号:
1915011 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Harnessing Symmetry-Protected Topological Orders for Quantum Computation
利用对称保护的拓扑序进行量子计算
- 批准号:
1620651 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Taming Quantum Many-Body Systems for Quantum Information
驯服量子多体系统以获取量子信息
- 批准号:
1314955 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
基于细菌接触损伤与应激诱导的QAC/PVDF膜抗生物污染机制与调控
- 批准号:51808395
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
EAGER-QAC-QSA: Quantum Algorithms for Correlated Electron-Phonon System
EAGER-QAC-QSA:相关电子声子系统的量子算法
- 批准号:
2337930 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER-QAC-QSA: Quantum Algorithms for Correlated Electron-Phonon System
EAGER-QAC-QSA:相关电子声子系统的量子算法
- 批准号:
2038011 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER‐QAC‐QSA: Quantum Chemistry with Mean-field Cost from Semidefinite Programming on Quantum Computing Devices
EAGER – QAC – QSA:量子计算设备上半定编程的具有平均场成本的量子化学
- 批准号:
2035876 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER-QAC-QSA: Bifurcation-Enabled Efficient Preparation of Many-body Ground States
EAGER-QAC-QSA:分叉有效制备多体基态
- 批准号:
2037987 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER-QAC-QSA: COLLABORATIVE RESEARCH: QUANTUM SIMULATION OF EXCITATIONS, BRAIDING, AND THE NONEQUILIBRIUM DYNAMICS OF FRACTIONAL QUANTUM HALL STATES
EAGER-QAC-QSA:合作研究:激发、编织和分数量子霍尔态的非平衡动力学的量子模拟
- 批准号:
2037996 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: QAC-QSA: Resource Reduction in Quantum Computational Chemistry Mapping by Optimizing Orbital Basis Sets
EAGER:QAC-QSA:通过优化轨道基集减少量子计算化学绘图中的资源
- 批准号:
2037263 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER-QAC-QSA: Variational Quantum Algorithms for Nonequilibrium Quantum Many-Body Systems
EAGER-QAC-QSA:非平衡量子多体系统的变分量子算法
- 批准号:
2038010 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: QAC-QSA: Hamiltonian Reconstruction for Ansatz Selection and Validation of the Variational Quantum Eigensolver
EAGER:QAC-QSA:用于变分量子本征求解器 Ansatz 选择和验证的哈密顿重建
- 批准号:
2038027 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: QAC-QSA: A HYBRID QUANTUM-CLASSICAL PATH-INTEGRAL METHOD FOR CHEMICAL DYNAMICS
EAGER:QAC-QSA:化学动力学混合量子经典路径积分方法
- 批准号:
2038005 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER-QAC-QSA: COLLABORATIVE RESEARCH: QUANTUM SIMULATION OF EXCITATIONS, BRAIDING, AND THE NONEQUILIBRIUM DYNAMICS OF FRACTIONAL QUANTUM HALL STATES
EAGER-QAC-QSA:合作研究:激发、编织和分数量子霍尔态的非平衡动力学的量子模拟
- 批准号:
2038028 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant