EDU: Automated Platform for Cyber Security Learning and Experimentation (AutoCUE)
EDU:网络安全学习和实验自动化平台 (AutoCUE)
基本信息
- 批准号:1623253
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the main obstacles in providing extensive hands-on experience in cybersecurity classes is the substantial amount of manual work involved in creating and grading the exercise. Combined with the frequent need to update the exercises, this obstacle effectively limits that amount of hands-on work that gets incorporated into cybersecurity education. This project seeks to eliminate such barriers, and to greatly improve the efficiency of the educational process by automating the most time-consuming tasks. This project makes two main contributions to cybersecurity education: the development of a specification-driven, dynamic environment for implementing realistic cyber defense and forensic analysis exercises; and the advanced support for class management and automated evaluation. The platform, AutoCUE, provides a high-level specification language, and an execution runtime that enable instructors to easily and efficiently run realistic scenarios that result in customized environments; based on the same methods, the system also be used to automatically create of realistic experimental data sets. The infrastructure provides an automated class management component, which consists of: a) deployment automation module, which guarantees consistent student lab environment, and central control by the instructor; b) scenario personalization module, which can generate customized exercises for each student (for evaluation purposes); and c) automated grading module, which combines ideas from capture-the-flag competitions and environment sensors to track student progress and automate the grading process. The project also provides ready-to-use seed content for two classes: digital forensics and network penetration testing.
在网络安全课程中提供广泛实践经验的主要障碍之一是创建和评分练习所涉及的大量手工工作。再加上经常需要更新练习,这一障碍有效地限制了纳入网络安全教育的实践工作量。该项目旨在消除这些障碍,并通过自动化最耗时的任务来大大提高教育过程的效率。该项目对网络安全教育做出了两个主要贡献:开发一个规范驱动的动态环境,用于实施现实的网络防御和取证分析练习;以及对班级管理和自动化评估的高级支持。AutoCUE平台提供了一种高级规范语言和一个执行运行时,使教师能够轻松有效地运行逼真的场景,从而产生定制的环境;基于相同的方法,该系统还可以用于自动创建逼真的实验数据集。该基础设施提供了一个自动化的班级管理组件,它包括:a)部署自动化模块,它保证一致的学生实验室环境,并由教师进行集中控制; B)场景个性化模块,它可以为每个学生生成定制的练习(用于评价目的);以及c)自动评分模块,其结合来自夺旗比赛和环境传感器的想法来跟踪学生的进步并使评分过程自动化。该项目还为两个课程提供了现成的种子内容:数字取证和网络渗透测试。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vassil Roussev其他文献
Forensic analysis of cloud-native artifacts
云原生工件的取证分析
- DOI:
10.1016/j.diin.2016.01.013 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Vassil Roussev;S. McCulley - 通讯作者:
S. McCulley
File fragment encoding classification - An empirical approach
文件片段编码分类 - 一种经验方法
- DOI:
10.1016/j.diin.2013.06.008 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Vassil Roussev;Candice Quates - 通讯作者:
Candice Quates
Content-Based Image Retrieval for Digital Forensics
用于数字取证的基于内容的图像检索
- DOI:
10.1007/0-387-31163-7_22 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Yixin Chen;Vassil Roussev;G. Richard;Yun Gao - 通讯作者:
Yun Gao
Forensics Knowledge Area Issue 1 . 0
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Vassil Roussev - 通讯作者:
Vassil Roussev
Vassil Roussev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vassil Roussev', 18)}}的其他基金
SaTC: EDU: A Formal Approach to Digital Forensics and Incident Response Investigations
SaTC:EDU:数字取证和事件响应调查的正式方法
- 批准号:
1821829 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CC* Network Design: ARCHES (Advanced Research Computing in the Humanities Engineering and Sciences) Network at the University of New Orleans
CC* 网络设计:新奥尔良大学 ARCHES(人文工程和科学高级研究计算)网络
- 批准号:
1660241 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EDU: Lightweight Environment for Network Security Education
EDU:网络安全教育的轻量级环境
- 批准号:
1419358 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
Identification and impact of polymers on stem cell products in an automated biomanufacturing platform
自动化生物制造平台中聚合物对干细胞产品的识别和影响
- 批准号:
10089013 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
A Semi-Automated Antibody-Discovery Platform to Target Challenging Biomolecules
针对具有挑战性的生物分子的半自动化抗体发现平台
- 批准号:
MR/Y003616/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Fellowship
Revolutionising Surgery Scheduling: an innovative AI-powered health-tech platform enhancing Operating Room efficiency, with an automated schedule unlocking the potential for an additional 10% or 350K surgeries annually in the UK.
彻底改变%20手术%20调度:%20an%20创新%20AI驱动%20健康科技%20平台%20增强%20操作%20房间%20效率,%20与%20an%20自动化%20调度%20解锁%20%20潜力%20用于%20an%20额外%
- 批准号:
10095646 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
A novel automated machine learning platform for predictive yield optimisation and real time tracking and tracing.
一种新颖的自动化机器学习平台,用于预测产量优化和实时跟踪和追踪。
- 批准号:
10064479 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
- 批准号:
10699828 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Versatile Strength Evaluation of CFRP Based on an Automated Data-Driven Numerical Simulation Platform
基于自动化数据驱动数值模拟平台的 CFRP 多功能强度评估
- 批准号:
23K16891 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
An automated, fully auditable company peer comparison platform, using natural language processing and AI to replace a currently manual process
一个自动化、完全可审核的公司同行比较平台,使用自然语言处理和人工智能来取代当前的手动流程
- 批准号:
10060782 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
Reducing the environmental impact of Metered Dose Inhalers with aflo, the automated inhaler technique platform
利用自动吸入器技术平台 aflo 减少定量吸入器对环境的影响
- 批准号:
10055368 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant for R&D
eSynthesis - an automated platform technology for rapid, high-throughput and clonal cell-free synthetic DNA synthesis
eSynthesis - 一种自动化平台技术,用于快速、高通量和克隆无细胞合成 DNA 合成
- 批准号:
10075886 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant for R&D














{{item.name}}会员




