I-Corps: Automated Postures Analysis for Ergonomic Risk
I-Corps:针对人体工程学风险的自动姿势分析
基本信息
- 批准号:1623669
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-02-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Workers in industries like manufacturing, construction, retail, health care, and logistics are involved in physically demanding activities, dealing with awkward body postures and repetitive manual handling tasks that result in ergonomic injuries (e.g., musculoskeletal disorders). For example, ergonomic injuries account for an average of 33% of nonfatal occupational injuries and illnesses in the U.S. These injuries are also associated with high costs (about $50 billion annually in the U.S.) to employers due to absenteeism, lost productivity, and increased health care, disability, and workers' compensation costs. To deal with such injuries, manual observation-based ergonomic assessments (e.g., checklists) have been widely used to identify awkward or/and repetitive working postures. However, manual observation methods are time-consuming, expensive and error prone, which makes them difficult to be easily applied to many workplaces. The need for trained analysts is also an obstacle to promote ergonomic assessments in workplaces. As a result, an effective and easily accessible means for ergonomic assessments is required to detect and minimize the risks of ergonomic injuries in a timely-manner. The proposed computer vision-based automatic posture analysis approach processes video images of workers taken via ordinary video recording devices like smartphones, tablets, and off-the-shelf camcorders, and consequently evaluates the level of their ergonomic risk they have while performing workplace tasks. The proposed innovation is to make the current ergonomic risk assessment process efficient, affordable, and robust by minimizing time-consuming, expensive, and error prone manual observation. Image sequences of working postures have distinguishable patterns that can be used to differentiate safe and injury-prone postures. By learning these patterns, this technology automatically identifies awkward postures on video recordings, enabling one to conduct ergonomic assessments in a timely manner without technical sophistication or skill. The proposed technical approach is also flexible and robust enough to deal with complex and crowded work environments. Particularly, this innovative virtual modeling approach to automatically create massive training datasets eliminates cumbersome data collection. In addition, the capability to differentiate different postures and realize rapid pose estimation with mobile devices enables the proposed approach to be applied to diverse ergonomic checklists in many industries. This innovation can provide an exciting path for many industries who suffer ergonomic injuries to reduce their burden of manual observation, ultimately opening a door toward the prevention of ergonomic injuries and the increase of productivity.
制造业、建筑业、零售业、医疗保健和物流等行业的工人从事体力要求高的活动,处理尴尬的身体姿势和重复的手工处理任务,导致人体工程学损伤(例如,肌肉骨骼疾病)。例如,在美国,人体工程学伤害平均占非致命性职业伤害和疾病的33%。这些伤害还与雇主的高成本(美国每年约500亿美元)有关,原因包括缺勤、生产力下降、医疗保健、残疾和工人赔偿成本的增加。为了处理此类伤害,基于人工观察的人体工程学评估(例如,检查清单)已被广泛用于识别尴尬或/和重复的工作姿势。然而,人工观察方法耗时长、成本高且容易出错,难以在许多工作场所轻松应用。需要训练有素的分析人员也是在工作场所促进人体工程学评估的一个障碍。因此,需要一种有效和容易获得的人体工程学评估方法来及时发现和减少人体工程学损伤的风险。提出的基于计算机视觉的自动姿势分析方法处理通过智能手机、平板电脑和现成摄像机等普通视频记录设备拍摄的工人的视频图像,从而评估他们在执行工作场所任务时的人体工程学风险水平。提出的创新是通过减少耗时、昂贵和容易出错的人工观察,使当前的人体工程学风险评估过程高效、负担得起和健壮。工作姿势的图像序列具有可区分的模式,可用于区分安全和容易受伤的姿势。通过学习这些模式,这项技术可以自动识别视频记录中的尴尬姿势,使人们能够在没有技术复杂性或技能的情况下及时进行人体工程学评估。所建议的技术方法也足够灵活和健壮,可以处理复杂和拥挤的工作环境。特别是,这种创新的虚拟建模方法可以自动创建大量训练数据集,从而消除了繁琐的数据收集。此外,通过移动设备区分不同姿势和实现快速姿势估计的能力使所提出的方法能够应用于许多行业的不同人体工程学检查清单。这项创新可以为许多遭受人体工程学伤害的行业提供一条令人兴奋的道路,以减轻人工观察的负担,最终为预防人体工程学伤害和提高生产力打开了一扇门。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SangHyun Lee其他文献
Dynamic Biomechanical Analysis for Construction Tasks Using Motion Data from Vision-Based Motion Capture Approaches
使用基于视觉的运动捕捉方法的运动数据对施工任务进行动态生物力学分析
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Joonoh Seo;R. Starbuck;SangUk Han;SangHyun Lee;T. Armstrong - 通讯作者:
T. Armstrong
Make it till you fake it: Construction-centric computational framework for simultaneous image synthetization and multimodal labeling
坚持到你伪装它:以建筑为中心的同时图像合成和多模态标记的计算框架
- DOI:
10.1016/j.autcon.2024.105696 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:11.500
- 作者:
Ali Tohidifar;Daeho Kim;SangHyun Lee - 通讯作者:
SangHyun Lee
Effect of social network type on building occupant energy use
社交网络类型对建筑居住者能源使用的影响
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Kyle Anderson;SangHyun Lee;C. Menassa - 通讯作者:
C. Menassa
A Graph-Based approach for individual fall risk assessment through a wearable inertial measurement unit sensor
一种通过可穿戴惯性测量单元传感器进行个体跌倒风险评估的基于图的方法
- DOI:
10.1016/j.aei.2025.103413 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:9.900
- 作者:
Hoonyong Lee;John Sohn;Gaang Lee;Jesse V. Jacobs;SangHyun Lee - 通讯作者:
SangHyun Lee
Single-Shot Visual Relationship Detection for the Accurate Identification of Contact-Driven Hazards in Sustainable Digitized Construction
单次视觉关系检测可准确识别可持续数字化施工中的接触驱动危害
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.9
- 作者:
Daeho Kim;Ankit Goyal;SangHyun Lee;V. Kamat;Meiyin Liu - 通讯作者:
Meiyin Liu
SangHyun Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SangHyun Lee', 18)}}的其他基金
FW-HTF-P/Collaborative Research: Anthropocentric Robot Collaboration in Construction
FW-HTF-P/协作研究:建筑中以人类为中心的机器人协作
- 批准号:
1928501 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Impacts of Heterogeneous Organizational Backgrounds and Social Norms on Employees' Behaviors in Temporary Organizations: Focusing on Safety Behavior in Construction Projects
异质组织背景和社会规范对临时组织员工行为的影响:以建设项目中的安全行为为中心
- 批准号:
1759199 - 财政年份:2018
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Non-Invasive Personalized Normative Messaging Intervention for the Reduction of Household Energy Consumption
用于减少家庭能源消耗的非侵入性个性化规范信息干预
- 批准号:
1705273 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
NRI: FND: Scene Understanding and Predictive Monitoring for Safe Human-Robot Collaboration in Unstructured and Dynamic Construction Environments
NRI:FND:场景理解和预测监控,实现非结构化和动态施工环境中的安全人机协作
- 批准号:
1734266 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
PFI: AIR - TT: Vision-based ergonomic risk assessment of working postures
PFI:AIR - TT:基于视觉的工作姿势人体工程学风险评估
- 批准号:
1640633 - 财政年份:2016
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: Automatic Behavior Monitoring for In-depth Analysis of Construction Fatalities and Injuries
合作研究:自动行为监测,深入分析施工伤亡情况
- 批准号:
1161123 - 财政年份:2012
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Cross-level feedback between individual absence behavior and absence culture in the construction industry
建筑行业个人缺勤行为与缺勤文化之间的跨层级反馈
- 批准号:
1127570 - 财政年份:2011
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似海外基金
CRII: SaTC: Automated Knowledge Representation for IoT Cybersecurity Regulations
CRII:SaTC:物联网网络安全法规的自动化知识表示
- 批准号:
2348147 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
ARC Training Centre for Automated Vehicles in Rural and Remote Regions
ARC农村和偏远地区自动驾驶汽车培训中心
- 批准号:
IC230100001 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Industrial Transformation Training Centres
Automated Formal Verification of Quantum Protocols for the Quantum Era
量子时代量子协议的自动形式验证
- 批准号:
24K20757 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
- 批准号:
EP/Y015878/1 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Fellowship
Screen4SpLDs - Development of an Automated Pre-Screening Tool for Specific Learning Disabilities in Children.
Screen4SpLDs - 开发针对儿童特定学习障碍的自动预筛查工具。
- 批准号:
EP/Y002121/1 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Research Grant
Identification and impact of polymers on stem cell products in an automated biomanufacturing platform
自动化生物制造平台中聚合物对干细胞产品的识别和影响
- 批准号:
10089013 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Collaborative R&D
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
- 批准号:
2887634 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Studentship
RII Track-4:NSF: Automated Design and Innovation of Chemical Production Processes with Intelligent Computing
RII Track-4:NSF:利用智能计算进行化学品生产过程的自动化设计和创新
- 批准号:
2327303 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Automated Modelling Assistance for the Creation of Complex Planning Models
用于创建复杂规划模型的自动建模协助
- 批准号:
DE240101245 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Discovery Early Career Researcher Award