NRI: FND: Scene Understanding and Predictive Monitoring for Safe Human-Robot Collaboration in Unstructured and Dynamic Construction Environments
NRI:FND:场景理解和预测监控,实现非结构化和动态施工环境中的安全人机协作
基本信息
- 批准号:1734266
- 负责人:
- 金额:$ 75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The construction industry has the highest number of fatalities and injuries due to hazardous working conditions. The introduction of robots on construction sites has the potential to relieve human workers from dangerous and repetitive tasks by making machines intelligent and autonomous. However, robotic solutions for construction face significant challenges. This project will develop technologies of automated monitoring and intervention through computer vision to provide a means to dramatically improve the perception of construction safety in the presence of co-robots. The new methods developed in this project will impact computer vision, machine learning, and effective human-robot collaboration in unstructured environments, while significantly contributing to safety. Further, the developed methodologies can be broadly applicable in situations where robots are deployed in human-centered environments (hospitals, airports, shipyards, etc.) and have other priorities such as productivity and efficiency as their objective. This project will engage a diverse group of individuals by training graduate and undergraduate students (including women and underrepresented minorities), reaching out to K-12 students, and interacting with industry professionals for broad dissemination of the research results.This research will investigate new computer vision based methods that can be coupled with other sensing modalities for holistic understanding and predictive analysis of jobsite safety on co-robotic construction sites. The project will consist of two main research thrusts. First, holistic scene understanding will be pursued on construction sites using graphical models to enable joint reasoning of various scene components. This holistic understanding in turn will help evaluate compliance with established safety rules expressed as formal statements. Second, predictive analysis will be investigated by exploiting the fact that, for safety intervention, the complex dynamics of a construction scene make it necessary to simulate what will happen next. In particular, Recurrent Neural Networks will be leveraged to predict future events and prevent impending accidents. Finally, an integrated demonstration system will be built and tested on real construction sites.
建筑业由于危险的工作条件而造成的伤亡人数最多。在建筑工地上引入机器人有可能通过使机器智能化和自主化,将人类工人从危险和重复性的任务中解放出来。然而,用于建筑的机器人解决方案面临着重大挑战。该项目将通过计算机视觉开发自动监控和干预技术,以提供一种方法,大大提高在协作机器人存在下的施工安全感。该项目开发的新方法将影响计算机视觉、机器学习和非结构化环境中的有效人机协作,同时为安全性做出重大贡献。此外,所开发的方法可以广泛适用于机器人部署在以人为中心的环境(医院,机场,造船厂等)中的情况。并以生产力和效率等其他优先事项为目标。这个项目将通过培训研究生和本科生来吸引不同群体的个人(包括妇女和代表性不足的少数民族),接触K-12学生,这项研究将探讨新的基于计算机视觉的方法,可以与其他传感模式相结合,用于全面理解和预测分析工地安全,机器人建筑工地该项目将包括两个主要研究方向。首先,将使用图形模型对建筑工地进行整体场景理解,以实现各种场景组件的联合推理。这种全面的理解反过来将有助于评估是否符合以正式声明形式表达的既定安全规则。其次,预测分析将通过利用这样一个事实进行研究,即,对于安全干预,施工现场的复杂动态使得有必要模拟接下来会发生什么。特别是,将利用递归神经网络来预测未来事件并防止即将发生的事故。最后,将建立一个集成的演示系统,并在真实的建筑工地上进行测试。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Trajectory Prediction of Mobile Construction Resources Toward Pro-active Struck-by Hazard Detection
- DOI:10.22260/isarc2019/0131
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:Daeho Kim;Meiyin Liu;SangHyun Lee;V. Kamat
- 通讯作者:Daeho Kim;Meiyin Liu;SangHyun Lee;V. Kamat
Enhancing Deep Neural Network-Based Trajectory Prediction: Fine-Tuning and Inherent Movement-Driven Post-Processing
- DOI:10.1061/9780784482872.008
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Daeho Kim;Houtan Jebelli;Sang Hyun Lee;V. Kamat
- 通讯作者:Daeho Kim;Houtan Jebelli;Sang Hyun Lee;V. Kamat
Rel3D: A Minimally Contrastive Benchmark for Grounding Spatial Relations in 3D
- DOI:
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Ankit Goyal;Kaiyu Yang;Dawei Yang;Jia Deng
- 通讯作者:Ankit Goyal;Kaiyu Yang;Dawei Yang;Jia Deng
Reality Capture Technologies (LiDAR, RGB-D, Vision)
现实捕捉技术(LiDAR、RGB-D、视觉)
- DOI:10.1061/9780784482438.019
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Liang, Ci-Jyun;Lundeen, Kurt M.;McGee, Wes;Menassa, Carol C.;Lee, SangHyun;Kamat, Vineet R.
- 通讯作者:Kamat, Vineet R.
PackIt: A Virtual Environment for Geometric Planning
- DOI:
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Ankit Goyal;Jia Deng
- 通讯作者:Ankit Goyal;Jia Deng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SangHyun Lee其他文献
Dynamic Biomechanical Analysis for Construction Tasks Using Motion Data from Vision-Based Motion Capture Approaches
使用基于视觉的运动捕捉方法的运动数据对施工任务进行动态生物力学分析
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Joonoh Seo;R. Starbuck;SangUk Han;SangHyun Lee;T. Armstrong - 通讯作者:
T. Armstrong
Make it till you fake it: Construction-centric computational framework for simultaneous image synthetization and multimodal labeling
坚持到你伪装它:以建筑为中心的同时图像合成和多模态标记的计算框架
- DOI:
10.1016/j.autcon.2024.105696 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:11.500
- 作者:
Ali Tohidifar;Daeho Kim;SangHyun Lee - 通讯作者:
SangHyun Lee
Effect of social network type on building occupant energy use
社交网络类型对建筑居住者能源使用的影响
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Kyle Anderson;SangHyun Lee;C. Menassa - 通讯作者:
C. Menassa
A Graph-Based approach for individual fall risk assessment through a wearable inertial measurement unit sensor
一种通过可穿戴惯性测量单元传感器进行个体跌倒风险评估的基于图的方法
- DOI:
10.1016/j.aei.2025.103413 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:9.900
- 作者:
Hoonyong Lee;John Sohn;Gaang Lee;Jesse V. Jacobs;SangHyun Lee - 通讯作者:
SangHyun Lee
Single-Shot Visual Relationship Detection for the Accurate Identification of Contact-Driven Hazards in Sustainable Digitized Construction
单次视觉关系检测可准确识别可持续数字化施工中的接触驱动危害
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.9
- 作者:
Daeho Kim;Ankit Goyal;SangHyun Lee;V. Kamat;Meiyin Liu - 通讯作者:
Meiyin Liu
SangHyun Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SangHyun Lee', 18)}}的其他基金
FW-HTF-P/Collaborative Research: Anthropocentric Robot Collaboration in Construction
FW-HTF-P/协作研究:建筑中以人类为中心的机器人协作
- 批准号:
1928501 - 财政年份:2019
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Impacts of Heterogeneous Organizational Backgrounds and Social Norms on Employees' Behaviors in Temporary Organizations: Focusing on Safety Behavior in Construction Projects
异质组织背景和社会规范对临时组织员工行为的影响:以建设项目中的安全行为为中心
- 批准号:
1759199 - 财政年份:2018
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
Non-Invasive Personalized Normative Messaging Intervention for the Reduction of Household Energy Consumption
用于减少家庭能源消耗的非侵入性个性化规范信息干预
- 批准号:
1705273 - 财政年份:2017
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
PFI: AIR - TT: Vision-based ergonomic risk assessment of working postures
PFI:AIR - TT:基于视觉的工作姿势人体工程学风险评估
- 批准号:
1640633 - 财政年份:2016
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
I-Corps: Automated Postures Analysis for Ergonomic Risk
I-Corps:针对人体工程学风险的自动姿势分析
- 批准号:
1623669 - 财政年份:2016
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Collaborative Research: Automatic Behavior Monitoring for In-depth Analysis of Construction Fatalities and Injuries
合作研究:自动行为监测,深入分析施工伤亡情况
- 批准号:
1161123 - 财政年份:2012
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Cross-level feedback between individual absence behavior and absence culture in the construction industry
建筑行业个人缺勤行为与缺勤文化之间的跨层级反馈
- 批准号:
1127570 - 财政年份:2011
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
相似国自然基金
Novosphingobium sp. FND-3降解呋喃丹的分子机制研究
- 批准号:31670112
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Movement perception in Functional Neurological Disorder (FND)
功能性神经疾病 (FND) 的运动感知
- 批准号:
MR/Y004000/1 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Research Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2348839 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
S&AS: FND: COLLAB: Planning and Control of Heterogeneous Robot Teams for Ocean Monitoring
S
- 批准号:
2311967 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2024882 - 财政年份:2021
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2024646 - 财政年份:2021
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
- 批准号:
2024792 - 财政年份:2021
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
- 批准号:
2024670 - 财政年份:2021
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NRI: FND: Natural Power Transmission through Unconstrained Fluids for Robotic Manipulation
NRI:FND:通过不受约束的流体进行自然动力传输,用于机器人操作
- 批准号:
2024409 - 财政年份:2020
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NRI: FND: Multi-Manipulator Extensible Robotic Platforms
NRI:FND:多机械手可扩展机器人平台
- 批准号:
2024435 - 财政年份:2020
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Collaborative Research: NRI: FND: Flying Swarm for Safe Human Interaction in Unstructured Environments
合作研究:NRI:FND:用于非结构化环境中安全人类互动的飞群
- 批准号:
2024615 - 财政年份:2020
- 资助金额:
$ 75万 - 项目类别:
Standard Grant