Efficient preprocessing for hard problems: New techniques and tight models for data reduction
难题的高效预处理:数据缩减的新技术和严格模型
基本信息
- 批准号:225019562
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Independent Junior Research Groups
- 财政年份:2012
- 资助国家:德国
- 起止时间:2011-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Preprocessing, in the sense of data reduction, is of fundamental importance for the practical solution of NP-hard problems. A very successful example is the commercial tool CPLEX for solving integer linear programs. It is known for its strong preprocessing. Nevertheless, for most of the time preprocessing has seen little theoretical study. One reason was that a robust theoretical model of preprocessing could not be found: A routine which shrinks every instance in polynomial time, could solve the whole problem in polynomial time (impossible unless P = NP). The notion of kernelization from the young area of parameterized complexity avoids this problem: A kernelization generates an equivalent instance whose size is bounded by a function in a parameter of the input; the size of the input is immaterial. Polynomial kernelizations, i.e., with output size polynomially bounded in the parameter, have turned into a vibrant field. The aim of this project is a fundamental deepening of the knowledge about preprocessing, starting at the notion of kernelization. On the one hand this includes a development of new techniques for kernelization and lower bounds. On the other hand it includes a research of other ways of modeling efficient preprocessing. The interplay of these two goals shall lead to precise results about preprocessing. One motivation comes from current techniques for lower bounds. Under complexity-theoretic assumptions, these techniques can be used to rule out the existence of polynomial kernelizations for certain problems. However, it has turned out, that this also rules out more general models of preprocessing for these problems; among them both practical as well as more theoretical models. Thus the techniques are not fully appropriate to answer the question of existence of efficient preprocessing. In PREMOD this thought shall be pursued. Some questions: Are there practical models which are not ruled out by current lower bound techniques? Can we develop more precise techniques for obtaining lower bounds? When can establish that a problem does not permit efficient preprocessing? A further motivation is the interest in the practicality of kernelization results. PREMOD shall contribute to this by researching stricter models for preprocessing as well as by experimental evaluation: Are existing kernelization results time- and space-efficiently implementable? Can we improve the choice of parameter, and obtain stronger results? How well is the interplay with approximation and heuristic algorithms? Are there more precise models for capturing the successful, simple, and local reduction rules from practice? Summarizing, PREMOD stands for the development of practically meaningful and theoretically sound models for preprocessing.
预处理,在这个意义上的数据减少,是非常重要的实际解决方案的NP难题。一个非常成功的例子是用于求解整数线性规划的商业工具CPLEX。它以其强大的预处理能力而闻名。然而,在大多数情况下,预处理很少有理论研究。一个原因是无法找到一个强大的预处理理论模型:一个在多项式时间内缩小每个实例的例程可以在多项式时间内解决整个问题(除非P = NP)。从参数化复杂性的年轻领域中的核化概念避免了这个问题:核化生成一个等价的实例,其大小由输入参数中的函数限制;输入的大小是无关紧要的。多项式核化,即,与输出大小多项式约束的参数,已经变成了一个充满活力的领域。这个项目的目的是从内核化的概念开始,从根本上深化关于预处理的知识。一方面,这包括核化和下界的新技术的发展。另一方面,研究了其他建模方法的有效预处理。这两个目标的相互作用将导致关于预处理的精确结果。一个动机来自当前的下界技术。在复杂性理论的假设下,这些技术可以用来排除某些问题的多项式核化的存在。然而,事实证明,这也排除了更一般的模型,这些问题的预处理,其中既有实际的,以及更多的理论模型。因此,这些技术并不完全适合回答有效预处理存在的问题。在PREMOD中,应遵循这一思想。一些问题:有没有实用的模型,不排除由目前的下限技术?我们能开发出更精确的技术来获得下界吗?什么时候可以确定一个问题不允许有效的预处理?另一个动机是对核化结果的实用性的兴趣。PREMOD将通过研究更严格的预处理模型以及实验评估来为此做出贡献:现有的内核化结果是否可以在时间和空间上有效地实现?我们能否改进参数的选择,并获得更强的结果?近似算法和启发式算法的相互作用如何?有没有更精确的模型来从实践中捕捉成功的、简单的和局部的归约规则?总而言之,PREMOD代表开发有实际意义和理论上合理的预处理模型。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Polynomial Kernels for Integer Linear Programs: Covering, Packing and Feasibility
整数线性规划的多项式核:覆盖、打包和可行性
- DOI:10.1007/978-3-642-40450-4_55
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Stefan Kratsch
- 通讯作者:Stefan Kratsch
A Structural Approach to Kernels for ILPs: Treewidth and Total Unimodularity
ILP 内核的结构方法:树宽和总单模性
- DOI:10.1007/978-3-662-48350-3_65
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Bart M. P. Jansen;Stefan Kratsch
- 通讯作者:Stefan Kratsch
Elimination Distances, Blocking Sets, and Kernels for Vertex Cover
- DOI:10.4230/lipics.stacs.2020.36
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:Eva-Maria C. Hols;Stefan Kratsch;A. Pieterse
- 通讯作者:Eva-Maria C. Hols;Stefan Kratsch;A. Pieterse
Streaming Kernelization
流式内核化
- DOI:10.1007/978-3-662-44465-8_24
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Stefan Fafianie;Stefan Kratsch
- 通讯作者:Stefan Kratsch
Point Line Cover
- DOI:10.1145/2832912
- 发表时间:2013-07
- 期刊:
- 影响因子:0
- 作者:Stefan Kratsch;Geevarghese Philip;Saurabh Ray
- 通讯作者:Stefan Kratsch;Geevarghese Philip;Saurabh Ray
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Stefan Kratsch其他文献
Professor Dr. Stefan Kratsch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Stefan Kratsch', 18)}}的其他基金
Beyond kernelization – Greater generality for efficient preprocessing
超越内核化 â 更通用的高效预处理
- 批准号:
526215872 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Prediction and validation of plausible biological phenomena using systematic preprocessing in drug discovery research.
在药物发现研究中使用系统预处理来预测和验证合理的生物现象。
- 批准号:
23K11320 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and implementation of data preprocessing and standardization pipeline for Driving in Virtual
虚拟驾驶数据预处理和标准化流程的设计与实现
- 批准号:
571765-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
New Horizons in Multivariate Preprocessing (MULTIPROCESS)
多变量预处理 (MULTIPROCESS) 的新视野
- 批准号:
EP/V044621/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
AI-based document preprocessing for optical character recognition
基于人工智能的光学字符识别文档预处理
- 批准号:
567474-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Alliance Grants
A universal system for constructive data preprocessing
用于建设性数据预处理的通用系统
- 批准号:
21K11778 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
NIPreps: integrating neuroimaging preprocessing workflows across modalities, populations, and species
NIPreps:整合跨模式、人群和物种的神经影像预处理工作流程
- 批准号:
10513258 - 财政年份:2021
- 资助金额:
-- - 项目类别:
NIPreps: integrating neuroimaging preprocessing workflows across modalities, populations, and species
NIPreps:整合跨模式、人群和物种的神经影像预处理工作流程
- 批准号:
10260312 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Preprocessing and Sensitivity Analysis for Cone Optimization
锥体优化的预处理和灵敏度分析
- 批准号:
551972-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Applying Machine Learning to Computational Preprocessing of Mass Spectrometry Data
将机器学习应用于质谱数据的计算预处理
- 批准号:
2441557 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Studentship
Preprocessing to enable recognition of handwritten and overwritten characters
预处理以实现手写和覆盖字符的识别
- 批准号:
20K03143 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)