DMREF/Collaborative Research: Accelerated Soft Magnetic Alloy Design and Synthesis Guided by Theory and Simulation

DMREF/合作研究:理论和仿真引导的加速软磁合金设计与合成

基本信息

  • 批准号:
    1628962
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Soft magnetic materials have use in power conversion, conditioning, distribution, and generation technologies, including transportation (electric vehicles), renewable energy (solar inverters), and aerospace (power converters and inductors) sectors. The term "soft magnet" refers to a magnetic material that easily changes magnetic pole directions using small magnetic fields. With over 20 percent of all generated electricity in the US being consumed by industrial electric motor drives, a mere 1 percent improvement in energy efficiency would result in significant financial and environmental benefits. The magnetic components are a major source of energy loss in the above-mentioned applications, motivating the need for soft magnets with better energy efficiency. The design cycle for new soft magnetic materials has so far been informed mainly by direct human engineering intuition and historic knowledge and bias, with materials development occurring by trial-and-error approaches. This Designing Materials to Revolutionize and Engineer our Future (DMREF) award supports research to establish, demonstrate, and validate a computation-guided framework for accelerated discovery of new, better performing soft magnetic materials. This approach will use computational materials science tools to guide alloy design, with the synthesis and experimental validation of properties performed for down-selected new alloys.Recently, new alloys with microstructures comprised of an amorphous matrix and nanocrystalline grains have revolutionized advanced soft magnetic materials by enabling smaller hysteresis than has been achieved in traditional magnetic materials. This award supports research on the design of new alloys of this type using hierarchical, multi-scale, magneto-structural modeling with input from density functional theory calculations of structural and magnetic properties for single-crystals. Micromagnetic theory will provide the constitutive law for the continuum-level model for optimization of realistic microstructures consisting of an amorphous matrix surrounding nanocrystals. The continuum-level modeling represents a fundamental advancement that will provide much-needed insight into the interplay between the microstructure effects and the magnetic properties of the crystalline phase in determining small hysteresis, as well as an operational understanding of the applicability limits of the currently-prevalent random anisotropy model for coercivity. Structural considerations will be evaluated by continuum thermodynamics modeling and resulting magnetic performance characteristics will be evaluated by micromagnetics modeling. Down-selected alloy compositions - as optimized by these computational approaches - will be synthesized using rapid solidification with subsequent annealing and characterized using state-of-the-art structural and magnetic characterization tools.
软磁材料可用于电力转换、调节、配电和发电技术,包括运输(电动汽车)、可再生能源(太阳能逆变器)和航空航天(电力转换器和电感器)领域。术语“软磁体”是指使用小磁场容易改变磁极方向的磁性材料。在美国,超过20%的发电量被工业电机驱动消耗,能源效率仅提高1%就能带来巨大的经济和环境效益。在上述应用中,磁性部件是能量损失的主要来源,从而激发了对具有更好能量效率的软磁体的需求。迄今为止,新型软磁材料的设计周期主要来自直接的人类工程直觉以及历史知识和偏见,材料开发通过试错法进行。设计材料以革命和工程我们的未来(DMREF)奖支持研究建立,演示和验证计算指导的框架,以加速发现新的,性能更好的软磁材料。这种方法将使用计算材料科学工具来指导合金设计,并对精选的新合金进行合成和性能实验验证。最近,具有非晶基体和纳米晶晶粒组成的微结构的新合金通过实现比传统磁性材料更小的磁滞,彻底改变了先进的软磁材料。该奖项支持使用分层,多尺度,磁结构建模与单晶结构和磁性的密度泛函理论计算输入的新型合金的设计研究。微磁学理论将提供连续水平模型的本构关系,用于优化由纳米晶体周围的非晶基体组成的实际微结构。连续级建模代表了一个根本性的进步,将提供急需的洞察到的微观结构的影响和磁性能的结晶相之间的相互作用,在确定小滞后,以及操作的理解,目前流行的随机各向异性模型的适用性限制的结晶度。结构考虑将通过连续热力学建模进行评估,并且由此产生的磁性能特性将通过微磁学建模进行评估。通过这些计算方法优化的向下选择的合金成分将使用快速凝固和随后的退火来合成,并使用最先进的结构和磁性表征工具进行表征。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard James其他文献

P‐82: Prediction Methodology for the Optical Properties of QDs with Arbitrary 3D Shape
P-82:任意 3D 形状 QD 光学性质的预测方法
  • DOI:
    10.1002/sdtp.15758
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hyung Uk Cho;B. Kim;Jintaek Cho;Richard James;Tae;S. Jun;Seungin Baek;Yongjo Kim;C. Lee
  • 通讯作者:
    C. Lee
Letter to the Editor: Assignment of 1H,13C and 15N signals of the DNase domain of colicin E9
  • DOI:
    10.1023/a:1008394407597
  • 发表时间:
    1999-06-01
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Sara B.-M. Whittaker;Ruth Boetzel;Colin MacDonald;Lu-Yun Lian;Richard James;Colin Kleanthous;Geoffrey R. Moore
  • 通讯作者:
    Geoffrey R. Moore
Radiation dose awareness amongst referring healthcare professionals in a tertiary care children's hospital
  • DOI:
    10.1016/j.crad.2013.05.032
  • 发表时间:
    2013-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Richard James;Dhiraj Joshi;Manigandan Thyagarajan
  • 通讯作者:
    Manigandan Thyagarajan
17‐1: Invited Paper: Enhancement of Current Efficiency for OLED Devices Using Meta‐Heuristic Algorithm
17-1:特邀论文:使用元启发式算法增强 OLED 器件的电流效率
  • DOI:
    10.1002/sdtp.14647
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hyung Uk Cho;Ja Hoon Koo;Daewook Kim;Jaebum Cho;Sunyoung Oh;B. Kim;Richard James;Seungin Baek;Yongjo Kim
  • 通讯作者:
    Yongjo Kim
How do financial incentives in parenting skills programs effect engagement and outcomes? A systematic review and meta-analysis protocol.
育儿技能项目中的经济激励如何影响参与度和结果?
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    N. Hodson;Madiha Majid;Richard James;E. Graham;D. Mroczek;R. Beidas
  • 通讯作者:
    R. Beidas

Richard James的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard James', 18)}}的其他基金

Structural and functional analysis of multiprotein complexes required for colicin translocation
大肠菌素易位所需的多蛋白复合物的结构和功能分析
  • 批准号:
    BB/D016320/1
  • 财政年份:
    2006
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Research Grant
Experimental, Analytical, and Computational Study of Nematic Optical Elastomers
向列光学弹性体的实验、分析和计算研究
  • 批准号:
    9700199
  • 财政年份:
    1997
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Engineering Research Equipment Grant: Instrumentation for Studies of Stress Induced Phase Transformation
工程研究设备补助金:用于研究应力诱导相变的仪器
  • 批准号:
    8906405
  • 财政年份:
    1989
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Mechanics of Phase Transformations in Solids
固体相变力学
  • 批准号:
    8612420
  • 财政年份:
    1987
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Thermomechanics of First Order Phase Transformations in Solids (Mechanical Engineering and Applied Mechanics)
固体中一阶相变的热力学(机械工程和应用力学)
  • 批准号:
    8209303
  • 财政年份:
    1982
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
1978 National Needs Postdoctoral Fellowship Program
1978年 国家急需博士后资助计划
  • 批准号:
    7815553
  • 财政年份:
    1978
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Fellowship Award

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
  • 批准号:
    2325392
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了