EAGER: Metrics to Evaluate Customer Preference Models for use in Engineering Design Optimization

EAGER:评估用于工程设计优化的客户偏好模型的指标

基本信息

  • 批准号:
    1630096
  • 负责人:
  • 金额:
    $ 23.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

Engineers have begun to use customer preference models developed in marketing, economics, and psychology to design products that better meet customer desires. While such models are adequate for marketing purposes, they often introduce significant errors when used as-is in an engineering design context. Despite the prevalent use of customer preference models by many engineering researchers, the field does not have adequate methods for evaluating the accuracy or appropriateness of demand models for use in this context. This EArly-concept Grant for Exploratory Research (EAGER) award provides support for fundamental research to develop metrics and a test procedure to evaluate various errors associated with customer preference models that can mislead engineering designers. Results will allow engineering designers to construct demand models using estimation methods that minimize errors in design selection and optimization. The metrics developed through this work will also allow practitioners to evaluate demand models and select the most appropriate model for their design problem. In addition, several education and dissemination activities will be conducted to improve student learning of model evaluation techniques and facilitate use of the evaluation methods by federal agencies that employ demand models to inform their funding and regulation of technology development in the transportation sector.The research objectives are to produce (1) engineering-design specific metrics that will evaluate the estimation biases associated with demand models, (2) a demonstration of the significance of demand-model estimation biases on optimal design variable selection, and (3) identification of one or more demand estimation methods that reduce biases affecting design selection and optimization. The research will draw upon discrete choice analysis and econometric estimation to identify metrics and estimation methods that are appropriate for engineering design. Estimation biases of two types of parameters that affect demand gradients with respect to engineering design variables -- customer preference coefficients and aggregate demand estimates -- will be examined. Multiple metrics will be tested to compare demand-model predictions with synthetic customer purchase data in which biases between the estimates and true parameters are known. Several different demand estimation methods proposed in econometrics will be evaluated using the identified metric(s). Finally, an optimization case study will be used to illustrate the influence of demand model biases on optimal design variables by comparing results using the identified estimation method that reduces parameter biases with one that does not.
工程师们已经开始使用在市场营销、经济学和心理学中开发的客户偏好模型来设计更好地满足客户需求的产品。虽然这些模型足以用于营销目的,但当在工程设计环境中按原样使用时,它们通常会引入重大错误。尽管许多工程研究人员普遍使用的客户偏好模型,该领域没有足够的方法来评估在这种情况下使用的需求模型的准确性或适当性。EARLY概念探索性研究奖(EAGER)为基础研究提供支持,以开发指标和测试程序,以评估与可能误导工程设计师的客户偏好模型相关的各种错误。结果将允许工程设计人员使用估计方法来构建需求模型,以最大限度地减少设计选择和优化中的错误。通过这项工作开发的指标也将允许从业者评估需求模型,并选择最合适的模型,为他们的设计问题。此外,为了提高学生对模型评估技术的学习,并促进使用需求模型的联邦机构对评估方法的使用,将开展一些教育和传播活动。研究目标是:(1)制定工程设计专用指标,以评估与需求模型相关的估计偏差;(2)证明需求模型估计偏差对最优设计变量选择的重要性,以及(3)识别一种或多种需求估计方法,其减少影响设计选择和优化的偏差。研究将利用离散选择分析和计量经济学估计,以确定适合工程设计的度量和估计方法。两种类型的参数,影响需求梯度相对于工程设计变量的估计偏差-客户偏好系数和总需求估计-将被检查。将测试多个指标,以比较需求模型预测与合成客户购买数据,其中估计值和真实参数之间的偏差是已知的。计量经济学中提出的几种不同的需求估计方法将使用确定的度量进行评估。最后,一个优化案例研究将被用来说明需求模型偏差对最优设计变量的影响,通过比较使用确定的估计方法,减少参数偏差与一个不。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kate Whitefoot其他文献

Estimating the potential for dynamic parking reservation systems to increase delivery vehicle accommodation
评估动态停车预订系统增加送货车辆容纳量的潜力

Kate Whitefoot的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kate Whitefoot', 18)}}的其他基金

CAREER: Product-line Design Optimization with Strategic Differentiation: Empirical Evidence and Modeling
职业:具有战略差异化的产品线设计优化:经验证据和建模
  • 批准号:
    1943438
  • 财政年份:
    2020
  • 资助金额:
    $ 23.53万
  • 项目类别:
    Standard Grant

相似海外基金

New metrics to measure and track fauna community condition in Australia
衡量和跟踪澳大利亚动物群落状况的新指标
  • 批准号:
    LP230100179
  • 财政年份:
    2024
  • 资助金额:
    $ 23.53万
  • 项目类别:
    Linkage Projects
Canonical Kahler metrics and complex Monge-Ampere equations
规范卡勒度量和复杂的 Monge-Ampere 方程
  • 批准号:
    2303508
  • 财政年份:
    2023
  • 资助金额:
    $ 23.53万
  • 项目类别:
    Standard Grant
Research on various canonical Kaehler metrics by means of energy functionals and non-Archimedean metrics
利用能量泛函和非阿基米德度量研究各种典型凯勒度量
  • 批准号:
    23K03120
  • 财政年份:
    2023
  • 资助金额:
    $ 23.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Metrics for Brain Controlled Communication: A comprehensive review of clinical outcome assessments for communication brain computer interfaces in amyotrophic lateral sclerosis
脑控制通信指标:肌萎缩侧索硬化症通信脑机接口临床结果评估的全面综述
  • 批准号:
    10848139
  • 财政年份:
    2023
  • 资助金额:
    $ 23.53万
  • 项目类别:
IMR: MM-1C: Methods and Metrics for IPv6 Internet Scanning
IMR:MM-1C:IPv6 互联网扫描的方法和指标
  • 批准号:
    2319315
  • 财政年份:
    2023
  • 资助金额:
    $ 23.53万
  • 项目类别:
    Continuing Grant
Assessing Diffusion MRI Metrics for Detecting Changes of Synaptic Density in Alzheimer's Disease
评估弥散 MRI 指标以检测阿尔茨海默病突触密度的变化
  • 批准号:
    10739911
  • 财政年份:
    2023
  • 资助金额:
    $ 23.53万
  • 项目类别:
Metrics of special curvature
特殊曲率度量
  • 批准号:
    2879224
  • 财政年份:
    2023
  • 资助金额:
    $ 23.53万
  • 项目类别:
    Studentship
Geometry of Wasserstein and Transportation Cost Metrics
Wasserstein 的几何形状和运输成本指标
  • 批准号:
    2247582
  • 财政年份:
    2023
  • 资助金额:
    $ 23.53万
  • 项目类别:
    Continuing Grant
Geometry of Wasserstein and Transportation Cost Metrics
Wasserstein 的几何形状和运输成本指标
  • 批准号:
    2342644
  • 财政年份:
    2023
  • 资助金额:
    $ 23.53万
  • 项目类别:
    Continuing Grant
A Smart Simulator for Metrics-based Cannulation Skills Training for Hemodialysis
用于基于指标的血液透析插管技能培训的智能模拟器
  • 批准号:
    10830667
  • 财政年份:
    2023
  • 资助金额:
    $ 23.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了