EAGER: Evaluating the Mechanisms of Perfluorinated Chemical Degradation by a Novel Plasma-Based Water Treatment Process

EAGER:通过新型等离子体水处理工艺评估全氟化学品降解机制

基本信息

  • 批准号:
    1630854
  • 负责人:
  • 金额:
    $ 7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-01-15 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

1630854MededovicPerfluoroalkyl compounds, that is those compounds that have fluorine attached to a carbon, have recently received considerable attention due to their ubiquitous presence in the environment. The presence of perfluoroalkyl compounds is problematic due to the lack of effective treatment technologies. The objective of this proposed research to develop an effective treatment, results from technology recently developed in the PIs' laboratories, the foaming electrical discharge plasma reactor that rapidly and efficiently degrades many chemicals including pharmaceuticals, personal care products, disinfection byproducts, and perfluoroalkyl compounds.The research objective of this project is to advance the fundamental understanding of the chemical reaction mechanisms by which reactive species produced by the foaming plasma reactor transform perfluoroalkyl compounds in water, evaluate the performance of the reactor for additional perfluoroalkyl substances, and identify potential degradation byproducts. The major hypothesis to be tested in this project is that free and aqueous electrons are the species responsible for the primary degradation reactions of perfluoroalkyl compounds. Radical propagation and termination reactions involving the formed radicals and electrons may be driven by any other species including hydroxyl radicals, hydrogen radicals, hydroperoxyl radicals and oxygen radical anions. To test these hypotheses, the experimental plan involves spectroscopic, radical scavenging, and state-of-the-art analytical techniques to determine the species responsible for the degradation of these compounds and their byproducts. The development of a versatile, robust and cost-effective technology that can rapidly and efficiently degrade perfluoroalkyl compounds and other contaminants of emerging concern in industrial effluent and groundwater before they can impact rivers and drinking water supply networks would likely be widely adopted and have a significant positive impact on water quality. The project is designed to answer critical questions: 1. Is the plasma-based water treatment equally effective for perfluorinated alkane substances other than perfluorinated octyl acids and perfluorinated octyl sulfonates? 2. What is the fate of these compounds during treatment and what are the key chemical species responsible for their transformation and what are the final products? 3. Can free electrons degrade short- and long-chained perfluorinated alkane substances or other oxidative radical contributing species? 4. Are transformation pathways similar for different perfluorinated alkane substances? Do physicochemical properties of the compounds (e.g., chain length) play a role in their extent of degradation? 5. Does the presence of co-contaminants lower the treatment efficiency? The project will involve both graduate and undergraduate students. Undergraduate students, who will serve as assistants to graduate students, will be recruited through institutional pipeline programs at the Institution.
1630854 Mededovic全氟烷基化合物,即具有连接到碳上的氟的那些化合物,由于它们在环境中的普遍存在,最近受到了相当大的关注。由于缺乏有效的处理技术,全氟烷基化合物的存在是一个问题。这项拟议研究的目的是开发一种有效的治疗方法,这是PI实验室最近开发的技术的结果,即发泡放电等离子体反应器,它可以快速有效地降解许多化学品,包括药品、个人护理产品、消毒副产品、该项目的研究目标是推进对化学反应机理的基本理解,由发泡等离子体反应器产生的反应性物质在水中转化全氟烷基化合物,评价反应器对另外的全氟烷基物质的性能,并鉴定潜在的降解副产物。本项目中要检验的主要假设是,自由电子和水电子是负责全氟烷基化合物主要降解反应的物质。涉及所形成的自由基和电子的自由基增长和终止反应可以由任何其他物质驱动,包括羟基自由基、氢自由基、氢过氧自由基和氧自由基阴离子。为了验证这些假设,实验计划涉及光谱,自由基清除和最先进的分析技术,以确定负责降解这些化合物及其副产物的物种。开发一种通用、可靠和具有成本效益的技术,能够在工业废水和地下水中的全氟烷基化合物和其他新出现的令人关切的污染物影响河流和饮用水供应网络之前,迅速有效地降解这些污染物,这种技术很可能会被广泛采用,并对水质产生重大的积极影响。该项目旨在回答关键问题:1。基于等离子体的水处理对除全氟辛酸和全氟辛基磺酸盐以外的全氟烷烃物质是否同样有效?2.这些化合物在治疗过程中的命运是什么?导致它们转化的关键化学物质是什么?最终产物是什么?3.自由电子能否降解短链和长链全氟烷烃物质或其他氧化自由基贡献物种?4.不同的全氟烷烃物质的转化途径是否相似?化合物的物理化学性质(例如,链长)在其降解程度中发挥作用?5.共污染物的存在是否会降低处理效率?该项目将涉及研究生和本科生。本科生,谁将担任助理研究生,将通过在该机构的机构管道计划招募。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Selma Mededovic其他文献

Selma Mededovic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Selma Mededovic', 18)}}的其他基金

Collaborative Research: ECO-CBET: Plasma-Assisted Dehalogenation of Persistent Halogen-Containing Waste Streams
合作研究:ECO-CBET:持久性含卤素废物流的等离子体辅助脱卤
  • 批准号:
    2318494
  • 财政年份:
    2023
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
Collaborative Research: ECLIPSE: Exploring Non-Oxidative Reaction Pathways of Atmospheric Pressure Plasmas
合作研究:ECLIPSE:探索大气压等离子体的非氧化反应途径
  • 批准号:
    2308858
  • 财政年份:
    2023
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
Interdisciplinary Study of Chemical and Transport Processes at a Plasma-Liquid Interface
等离子体-液体界面化学和传输过程的跨学科研究
  • 批准号:
    1617822
  • 财政年份:
    2016
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
Collaborative Research: Direct-in-liquid electrical discharge for the production of hydrogen-rich gas
合作研究:直接液体放电生产富氢气体
  • 批准号:
    1336385
  • 财政年份:
    2013
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
BRIGE: The Production of Biodiesel Using Liquid-Phase Electrical Discharge Plasmas
BRIGE:利用液相放电等离子体生产生物柴油
  • 批准号:
    1125592
  • 财政年份:
    2011
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant

相似海外基金

Evaluating the Mechanisms of Afferent Renal Nerve Ablation as a Treatment for Hypertension
评估传入肾神经消融治疗高血压的机制
  • 批准号:
    10604700
  • 财政年份:
    2023
  • 资助金额:
    $ 7万
  • 项目类别:
Evaluating clogging mechanisms of vacuum consolidation drain using DEM-LBM coupled modeling
使用 DEM-LBM 耦合建模评估真空固结排水管的堵塞机制
  • 批准号:
    23KF0239
  • 财政年份:
    2023
  • 资助金额:
    $ 7万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Evaluating Mechanisms and Therapeutic Potential of (GLP-1R) Agonists for Glaucoma Treatment
评估 (GLP-1R) 激动剂治疗青光眼的机制和治疗潜力
  • 批准号:
    10660124
  • 财政年份:
    2023
  • 资助金额:
    $ 7万
  • 项目类别:
Development of Assessment Tools for Evaluating Organic Chemistry Learners' Understanding of Reaction Mechanisms
开发用于评估有机化学学习者对反应机理理解的评估工具
  • 批准号:
    2315626
  • 财政年份:
    2023
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
Sunlight and tire wear particles - a toxic combination? Evaluating mechanisms for mobilization and degradation of tire particle compounds
阳光和轮胎磨损颗粒——有毒的组合?
  • 批准号:
    2327008
  • 财政年份:
    2023
  • 资助金额:
    $ 7万
  • 项目类别:
    Standard Grant
Evaluating Mechanisms Underlying Resistance in Alzheimer’s Disease
评估阿尔茨海默氏病耐药机制
  • 批准号:
    10605519
  • 财政年份:
    2023
  • 资助金额:
    $ 7万
  • 项目类别:
Evaluating the efficacy and mechanisms of action of app-based audio tools for improved sleep health in working adult populations
评估基于应用程序的音频工具改善工作成年人睡眠健康的功效和作用机制
  • 批准号:
    2876780
  • 财政年份:
    2023
  • 资助金额:
    $ 7万
  • 项目类别:
    Studentship
Evaluating mechanisms of sex differences in environmentally-induced metabolic diseases
评估环境引起的代谢疾病中性别差异的机制
  • 批准号:
    10449473
  • 财政年份:
    2022
  • 资助金额:
    $ 7万
  • 项目类别:
Evaluating Individual Cancer-associated Thrombosis Mechanisms to Inform Personalized Thromboprophylaxis in Patients with Metastatic Bone Disease
评估个体癌症相关血栓形成机制,为转移性骨病患者的个性化血栓预防提供信息
  • 批准号:
    465447
  • 财政年份:
    2022
  • 资助金额:
    $ 7万
  • 项目类别:
    Operating Grants
Evaluating Individual Cancer-associated Thrombosis Mechanisms to Inform Personalized Thromboprophylaxis in Patients with Metastatic Bone Disease
评估个体癌症相关血栓形成机制,为转移性骨病患者的个性化血栓预防提供信息
  • 批准号:
    469094
  • 财政年份:
    2022
  • 资助金额:
    $ 7万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了