BIGDATA: Collaborative Research: IA: F: Latent and Graphical Models for Complex Dependent Data in Education
BIGDATA:协作研究:IA:F:教育中复杂相关数据的潜在模型和图形模型
基本信息
- 批准号:1633360
- 负责人:
- 金额:$ 80.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a comprehensive research proposal on the statistical modeling and analysis for educational assessment. This research addresses issues concerning fundamental statistical problems that arise in the analysis of Big Data in education. The research focus is on modeling and inference for large-scale data with complex dependence and structures (such as high-dimensional response and process data). These data arise from the introduction of new methods of testing student knowledge that rely on scenarios presented to the students and on simulation-based environments where student responses to a simulated environment are tested. This research is collaborative between Columbia University and the Educational Testing Service.The topics studied include latent graphical modeling for high-dimensional item response data, modeling and segmentation of process data via dictionary models, estimation of item-attribute relationship, dimension reduction, theoretical analysis and computational methods for the proposed models. The analysis combines techniques and concepts from mathematics and probability and applies them to nonlinear statistical models and data analysis. The proposed model combines latent variable and graphical approaches for high-dimensional data; for modeling process data, recent advances in modeling and segmenting techniques for natural language processing will be investigated. In the theoretical development, several algebraic concepts to formulate model identifiability and perform combinatorial analysis on high-dimensional discrete spaces will be studied. In addition, optimization algorithms will be developed using recent advances in numerical methods.
这是一个关于教育评估统计建模与分析的综合性研究方案。这项研究解决了教育大数据分析中出现的基本统计问题。研究的重点是具有复杂依赖和结构的大规模数据(如高维响应和过程数据)的建模和推理。这些数据产生于引入新的方法来测试学生的知识,依赖于向学生呈现的场景和基于模拟的环境,学生对模拟环境的反应进行测试。本研究是哥伦比亚大学与美国教育考试服务中心合作开展的,主要研究内容包括:高维项目反应数据的隐图建模、基于字典模型的过程数据建模与分割、项目-属性关系估计、降维、模型的理论分析和计算方法。该分析结合了数学和概率的技术和概念,并将其应用于非线性统计模型和数据分析。该模型结合了潜在变量和图形化的方法为高维数据建模过程数据,建模和分割技术的自然语言处理的最新进展将进行调查。在理论发展中,将研究几个代数概念,以制定模型可识别性和高维离散空间进行组合分析。此外,将利用数值方法的最新进展开发优化算法。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A multilevel approach towards unbiased sampling of random elliptic partial differential equations
随机椭圆偏微分方程无偏采样的多级方法
- DOI:10.1017/apr.2018.49
- 发表时间:2018
- 期刊:
- 影响因子:1.2
- 作者:Li, Xiaoou;Liu, Jingchen;Xu, Shun
- 通讯作者:Xu, Shun
Optimal Stopping and Worker Selection in Crowdsourcing: an Adaptive Sequential Probability Ratio Test Framework
- DOI:10.5705/ss.202018.0300
- 发表时间:2017-08
- 期刊:
- 影响因子:1.4
- 作者:Xiaoou Li;Yunxiao Chen;Xi Chen;Jingchen Liu;Z. Ying
- 通讯作者:Xiaoou Li;Yunxiao Chen;Xi Chen;Jingchen Liu;Z. Ying
Hypothesis Testing of the Q-matrix
Q 矩阵的假设检验
- DOI:10.1007/s11336-018-9629-6
- 发表时间:2018
- 期刊:
- 影响因子:3
- 作者:Gu, Yuqi;Liu, Jingchen;Xu, Gongjun;Ying, Zhiliang
- 通讯作者:Ying, Zhiliang
Latent Class Analysis of Recurrent Events in Problem-Solving Items
解决问题的项目中重复事件的潜在类别分析
- DOI:10.1177/0146621617748325
- 发表时间:2018
- 期刊:
- 影响因子:1.2
- 作者:Xu, Haochen;Fang, Guanhua;Chen, Yunxiao;Liu, Jingchen;Ying, Zhiliang
- 通讯作者:Ying, Zhiliang
A reinforcement learning approach to personalized learning recommendation systems
- DOI:10.1111/bmsp.12144
- 发表时间:2019-02-01
- 期刊:
- 影响因子:2.6
- 作者:Tang, Xueying;Chen, Yunxiao;Ying, Zhiliang
- 通讯作者:Ying, Zhiliang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jingchen Liu其他文献
Coordinated deformation characteristics and its effect on microstructure evolution of LA103Z Mg-Li alloy in reciprocating rotary extrusion
- DOI:
10.1016/j.jmatprotec.2024.118528 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
Jingchen Liu;Chaoyang Sun;Lingyun Qian;Yinghao Feng;Sinuo Xu;Yaoliang Yang - 通讯作者:
Yaoliang Yang
Ultrasound-guided quadratus lumborum block for postoperative analgesia in renal surgery: a systematic review and meta-analysis of randomized controlled trials
- DOI:
10.1007/s00540-022-03040-z - 发表时间:
2022-01-22 - 期刊:
- 影响因子:2.700
- 作者:
Yuanqiang Li;Cheng Lin;Jingchen Liu - 通讯作者:
Jingchen Liu
Training data recycling for multi-level learning
多层次学习的训练数据回收
- DOI:
10.5402/2012/872131 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Jingchen Liu;Scott McCloskey;Yanxi Liu - 通讯作者:
Yanxi Liu
External Correlates of Adult Digital Problem-Solving Behavior: Log Data Analysis of a Large-Scale Assessment
成人数字化问题解决行为的外部关联:大规模评估的日志数据分析
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Susu Zhang;Xueying Tang;Qiwei He;Jingchen Liu;Z. Ying - 通讯作者:
Z. Ying
Pain sensitivity: a feasible way to predict the intensity of stress reaction caused by endotracheal intubation and skin incision?
- DOI:
10.1007/s00540-015-2040-x - 发表时间:
2015-07-18 - 期刊:
- 影响因子:2.700
- 作者:
Haitang Wang;Yehua Cai;Jingchen Liu;Yinv Dong;Jian Lai - 通讯作者:
Jian Lai
Jingchen Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jingchen Liu', 18)}}的其他基金
Process Data for Modern Educational Assessment and Learning
现代教育评估和学习的处理数据
- 批准号:
2119938 - 财政年份:2022
- 资助金额:
$ 80.07万 - 项目类别:
Standard Grant
Statistical Learning for Innovative Assessment
创新评估的统计学习
- 批准号:
1826540 - 财政年份:2018
- 资助金额:
$ 80.07万 - 项目类别:
Standard Grant
Statistical Analysis for Cognitive Diagnosis - Theory and Applications
认知诊断的统计分析 - 理论与应用
- 批准号:
1323977 - 财政年份:2013
- 资助金额:
$ 80.07万 - 项目类别:
Standard Grant
Efficient Monte Carlo Methods for Gaussian Random Fields
高斯随机场的高效蒙特卡罗方法
- 批准号:
1069064 - 财政年份:2011
- 资助金额:
$ 80.07万 - 项目类别:
Standard Grant
Statistical Analysis for Cognitive Assessment
认知评估的统计分析
- 批准号:
1123698 - 财政年份:2011
- 资助金额:
$ 80.07万 - 项目类别:
Standard Grant
相似海外基金
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 80.07万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
2308649 - 财政年份:2022
- 资助金额:
$ 80.07万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
- 批准号:
2027516 - 财政年份:2020
- 资助金额:
$ 80.07万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
- 批准号:
1934319 - 财政年份:2019
- 资助金额:
$ 80.07万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
- 批准号:
1838022 - 财政年份:2019
- 资助金额:
$ 80.07万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
- 批准号:
1926250 - 财政年份:2019
- 资助金额:
$ 80.07万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
1947584 - 财政年份:2019
- 资助金额:
$ 80.07万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
1837964 - 财政年份:2019
- 资助金额:
$ 80.07万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
- 批准号:
1838222 - 财政年份:2019
- 资助金额:
$ 80.07万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
- 批准号:
1838248 - 财政年份:2019
- 资助金额:
$ 80.07万 - 项目类别:
Standard Grant