Statistical Learning for Innovative Assessment
创新评估的统计学习
基本信息
- 批准号:1826540
- 负责人:
- 金额:$ 35.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project will develop statistical methods for modern cognitive assessment. With the increasing use of computer-based testing, a variety of high-dimensional and complex structured data sets have been collected. The project will focus on statistical modeling and inference for large-scale data sets of complex structures. Specific topics to be addressed include the analysis of process data, adaptive learning through a reinforcement learning framework, and the development of computational methods for the models to be developed. The results of this research will provide a deeper understanding of the complex data structures collected in technology-rich interactive tasks. The project will shed light on items in learning and assessment environments that are delivered online both in client-server constellations and in stand-alone applications. The project will provide guidelines to improve item quality with a focus on more innovative item types, such as those in scenario-based and simulation-based environments for the assessment of students' knowledge and skills in the STEM fields. Educational researchers will be provided with tools to identify patterns in high-dimensional data and sequence data. Students in instructional and interventional programs will benefit from this research, especially in the STEM fields that are increasingly defined by digital media and technology-based interaction and communication.Recent large-scale computer-based assessments have developed a number of interactive problem-solving items and collaborative problem-solving items. The investigators will develop statistical methods for the analysis of these new items. The investigators will concentrate on several aspects that are very challenging in the analysis of modern computer-based assessment; specifically, they will focus on: 1) predicting human behavior by means of modern machine learning techniques; 2) extracting latent structure and graphical structure for process data collected by interactive problem-solving items through event history analyses; 3) providing personalized learning material through a reinforcement learning framework; and 4) developing numerical methods to optimize high-dimensional functions either stochastically or deterministically. The models to be developed will combine latent variable and graphical approaches as well as deep-learning techniques for high-dimensional data. For modeling process data, the investigators will employ recent advances in modeling and segmenting techniques for natural language processing. For computation, the investigators will develop adaptive Robbins-Monro stochastic approximation. Optimization algorithms will be developed using recent advances in numerical methods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究项目将为现代认知评估开发统计方法。随着计算机测试的使用越来越多,各种高维的、复杂的结构化数据集被收集起来。该项目将侧重于复杂结构的大规模数据集的统计建模和推断。要讨论的具体主题包括过程数据分析、通过强化学习框架进行的自适应学习,以及为待开发的模型开发计算方法。这项研究的结果将提供对收集在技术丰富的交互任务中的复杂数据结构的更深层次的理解。该项目将阐明在客户-服务器星座和独立应用程序中在线提供的学习和评估环境中的项目。该项目将提供提高项目质量的指导方针,重点放在更具创新性的项目类型上,例如在基于情景和基于模拟的环境中评估学生在STEM领域的知识和技能。将向教育研究人员提供工具,以识别高维数据和序列数据中的模式。教学和干预项目的学生将从这项研究中受益,特别是在STEM领域,这些领域越来越多地被数字媒体和基于技术的互动和交流所定义。最近的大规模计算机评估开发了一些交互式问题解决项目和协作问题解决项目。调查人员将开发统计方法来分析这些新项目。研究人员将集中在几个在现代计算机评估分析中具有挑战性的方面;具体地说,他们将集中在:1)通过现代机器学习技术预测人类行为;2)通过事件历史分析从交互式问题解决项目收集的过程数据中提取潜在结构和图形结构;3)通过强化学习框架提供个性化学习材料;以及4)开发数值方法来随机或确定性地优化高维函数。将要开发的模型将结合潜在变量和图形方法以及高维数据的深度学习技术。对于建模过程数据,调查人员将采用自然语言处理的建模和分段技术方面的最新进展。在计算方面,研究人员将开发自适应Robbins-Monro随机逼近。优化算法将利用数值方法的最新进展来开发。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A multilevel approach towards unbiased sampling of random elliptic partial differential equations
随机椭圆偏微分方程无偏采样的多级方法
- DOI:10.1017/apr.2018.49
- 发表时间:2018
- 期刊:
- 影响因子:1.2
- 作者:Li, Xiaoou;Liu, Jingchen;Xu, Shun
- 通讯作者:Xu, Shun
Optimal Stopping and Worker Selection in Crowdsourcing: an Adaptive Sequential Probability Ratio Test Framework
- DOI:10.5705/ss.202018.0300
- 发表时间:2017-08
- 期刊:
- 影响因子:1.4
- 作者:Xiaoou Li;Yunxiao Chen;Xi Chen;Jingchen Liu;Z. Ying
- 通讯作者:Xiaoou Li;Yunxiao Chen;Xi Chen;Jingchen Liu;Z. Ying
Hypothesis Testing of the Q-matrix
Q 矩阵的假设检验
- DOI:10.1007/s11336-018-9629-6
- 发表时间:2018
- 期刊:
- 影响因子:3
- 作者:Gu, Yuqi;Liu, Jingchen;Xu, Gongjun;Ying, Zhiliang
- 通讯作者:Ying, Zhiliang
Accurate Assessment via Process Data
- DOI:10.1007/s11336-022-09880-8
- 发表时间:2021-03
- 期刊:
- 影响因子:3
- 作者:Susu Zhang;Zhi Wang;Jitong Qi;Jingchen Liu;Z. Ying
- 通讯作者:Susu Zhang;Zhi Wang;Jitong Qi;Jingchen Liu;Z. Ying
Statistical Analysis of Multi-Relational Network Recovery
多关系网络恢复统计分析
- DOI:10.3389/fams.2020.540225
- 发表时间:2020
- 期刊:
- 影响因子:1.4
- 作者:Wang, Zhi;Tang, Xueying;Liu, Jingchen
- 通讯作者:Liu, Jingchen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jingchen Liu其他文献
Coordinated deformation characteristics and its effect on microstructure evolution of LA103Z Mg-Li alloy in reciprocating rotary extrusion
- DOI:
10.1016/j.jmatprotec.2024.118528 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
Jingchen Liu;Chaoyang Sun;Lingyun Qian;Yinghao Feng;Sinuo Xu;Yaoliang Yang - 通讯作者:
Yaoliang Yang
Ultrasound-guided quadratus lumborum block for postoperative analgesia in renal surgery: a systematic review and meta-analysis of randomized controlled trials
- DOI:
10.1007/s00540-022-03040-z - 发表时间:
2022-01-22 - 期刊:
- 影响因子:2.700
- 作者:
Yuanqiang Li;Cheng Lin;Jingchen Liu - 通讯作者:
Jingchen Liu
Training data recycling for multi-level learning
多层次学习的训练数据回收
- DOI:
10.5402/2012/872131 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Jingchen Liu;Scott McCloskey;Yanxi Liu - 通讯作者:
Yanxi Liu
External Correlates of Adult Digital Problem-Solving Behavior: Log Data Analysis of a Large-Scale Assessment
成人数字化问题解决行为的外部关联:大规模评估的日志数据分析
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Susu Zhang;Xueying Tang;Qiwei He;Jingchen Liu;Z. Ying - 通讯作者:
Z. Ying
Pain sensitivity: a feasible way to predict the intensity of stress reaction caused by endotracheal intubation and skin incision?
- DOI:
10.1007/s00540-015-2040-x - 发表时间:
2015-07-18 - 期刊:
- 影响因子:2.700
- 作者:
Haitang Wang;Yehua Cai;Jingchen Liu;Yinv Dong;Jian Lai - 通讯作者:
Jian Lai
Jingchen Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jingchen Liu', 18)}}的其他基金
Process Data for Modern Educational Assessment and Learning
现代教育评估和学习的处理数据
- 批准号:
2119938 - 财政年份:2022
- 资助金额:
$ 35.9万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: IA: F: Latent and Graphical Models for Complex Dependent Data in Education
BIGDATA:协作研究:IA:F:教育中复杂相关数据的潜在模型和图形模型
- 批准号:
1633360 - 财政年份:2017
- 资助金额:
$ 35.9万 - 项目类别:
Standard Grant
Statistical Analysis for Cognitive Diagnosis - Theory and Applications
认知诊断的统计分析 - 理论与应用
- 批准号:
1323977 - 财政年份:2013
- 资助金额:
$ 35.9万 - 项目类别:
Standard Grant
Efficient Monte Carlo Methods for Gaussian Random Fields
高斯随机场的高效蒙特卡罗方法
- 批准号:
1069064 - 财政年份:2011
- 资助金额:
$ 35.9万 - 项目类别:
Standard Grant
Statistical Analysis for Cognitive Assessment
认知评估的统计分析
- 批准号:
1123698 - 财政年份:2011
- 资助金额:
$ 35.9万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
An innovative cyber compliance platform using AI, live monitoring data and machine learning to automate compliance and due diligence completion.
一个创新的网络合规平台,使用人工智能、实时监控数据和机器学习来自动完成合规和尽职调查。
- 批准号:
10100493 - 财政年份:2024
- 资助金额:
$ 35.9万 - 项目类别:
Collaborative R&D
Adapt innovative deep learning methods from breast cancer to Alzheimers disease
采用从乳腺癌到阿尔茨海默病的创新深度学习方法
- 批准号:
10713637 - 财政年份:2023
- 资助金额:
$ 35.9万 - 项目类别:
Innovative prediction method for for chemical-induced developmental toxicity using causal inference through machine learning.
通过机器学习进行因果推理来预测化学品引起的发育毒性的创新方法。
- 批准号:
23H03555 - 财政年份:2023
- 资助金额:
$ 35.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Visualization of somatosensory function and development of innovative perceptual learning methods
体感功能可视化及创新感知学习方法的发展
- 批准号:
23KJ1810 - 财政年份:2023
- 资助金额:
$ 35.9万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Learning from Innovative practitioners, researchers and policy makers
向创新实践者、研究人员和政策制定者学习
- 批准号:
BB/V003607/1 - 财政年份:2023
- 资助金额:
$ 35.9万 - 项目类别:
Research Grant
A Climate of Hope: Investigating learning at an innovative exhibit towards new knowledge, theory, and practice of climate change learning with diverse audiences
希望的气候:在创新展览中调查学习情况,向不同观众学习气候变化的新知识、理论和实践
- 批准号:
2314238 - 财政年份:2023
- 资助金额:
$ 35.9万 - 项目类别:
Standard Grant
Using Innovative Machine Learning to Detect Organized Support and Opposition to E-cigarette Use Prevention Campaign Messaging on Twitter and TikTok
使用创新的机器学习来检测 Twitter 和 TikTok 上有组织的对电子烟使用预防运动消息的支持和反对
- 批准号:
10720700 - 财政年份:2023
- 资助金额:
$ 35.9万 - 项目类别:
Health Workforce Development, Support, and Retention in Learning Health Systems: Co-creation of Innovative Approaches for Engagement in Research in Long-Term Care
学习型卫生系统中卫生劳动力的发展、支持和保留:共同创造参与长期护理研究的创新方法
- 批准号:
480858 - 财政年份:2023
- 资助金额:
$ 35.9万 - 项目类别:
Miscellaneous Programs
Innovative Quantum/Ising based Machine Learning
基于创新量子/Ising 的机器学习
- 批准号:
22KJ0319 - 财政年份:2023
- 资助金额:
$ 35.9万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Innovative Use of Machine-Learning Algorithm Assistance to Rapidly Recognize the Presence of Sudden Cardiac Arrest and Initiate Life-Saving CPR Instructions During Conversations Between 9-1-1 Callers and Telecommunicators.
创新地使用机器学习算法辅助来快速识别心脏骤停的存在,并在 9-1-1 呼叫者和电信员之间的对话期间启动挽救生命的心肺复苏指令。
- 批准号:
487794 - 财政年份:2023
- 资助金额:
$ 35.9万 - 项目类别:
Miscellaneous Programs