Methods for Solving Nonlinear Differential Equations Describing Water Waves
求解描述水波的非线性微分方程的方法
基本信息
- 批准号:RGPIN-2020-06417
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this work we explore two themes: computing solutions to equations describing water waves and analysing the stability of these solutions. The focus of the research program is on waves under ice. With a recent trend of climate change and global warming resulting in melting of sea ice, this has a large impact on transportation of supplies to communities in northern Canada. The long term vision of this work aims to contribute to understanding ice-water interactions. In particular we hope to understand under which conditions the ice can break, for example, if supplies are transported in a truck travelling over an ice road. The approach will be broken down into shorter term goals. First, we will use high performance computing techniques to speed up existing code for computing waves under ice. Using the more efficient code, we will invoke a more physical model to describe the interaction, including inhomogeneities of ice as well as dissipation of energy. In order to examine how physical solutions to the resulting equations are, we will modify existing methodology for stability analysis to also include dissipative effects. Since more extreme waves will occur in a nonlinear regime, we will also extend the stability analysis to capture these types of solutions. The impact of this work will not only contribute to understanding waves under ice, but the methodology developed will be applicable on a wide range of disciplines, whenever modelling of physical phenomena is done via partial differential equations.
在这项工作中,我们探讨两个主题:计算解决方案,描述水波方程和分析这些解决方案的稳定性。研究计划的重点是冰下的波浪。随着最近气候变化和全球变暖的趋势导致海冰融化,这对向加拿大北方社区运送物资产生了很大影响。这项工作的长期愿景旨在帮助理解冰水相互作用。我们特别希望了解在何种条件下冰会破裂,例如,如果物资是用卡车在冰路上运输的。 该方法将被分解为较短期的目标。首先,我们将使用高性能计算技术来加速现有的代码计算冰下的波。使用更有效的代码,我们将调用一个更物理的模型来描述的相互作用,包括冰的不均匀性以及能量耗散。为了研究所得到的方程的物理解是如何的,我们将修改现有的稳定性分析方法,以包括耗散效应。由于更多的极端波浪将发生在非线性区域,我们还将扩展稳定性分析,以捕获这些类型的解决方案。这项工作的影响将不仅有助于了解冰下的波,但开发的方法将适用于广泛的学科,只要通过偏微分方程进行物理现象的建模。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Trichtchenko, Olga其他文献
Dynamic strain measurements in a sliding microstructured contact
- DOI:
10.1088/0953-8984/20/01/015004 - 发表时间:
2008-01-09 - 期刊:
- 影响因子:2.7
- 作者:
Bennewitz, Roland;David, Jonathan;Trichtchenko, Olga - 通讯作者:
Trichtchenko, Olga
Trichtchenko, Olga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Trichtchenko, Olga', 18)}}的其他基金
Methods for Solving Nonlinear Differential Equations Describing Water Waves
求解描述水波的非线性微分方程的方法
- 批准号:
RGPIN-2020-06417 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Methods for Solving Nonlinear Differential Equations Describing Water Waves
求解描述水波的非线性微分方程的方法
- 批准号:
DGECR-2020-00358 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Launch Supplement
Methods for Solving Nonlinear Differential Equations Describing Water Waves
求解描述水波的非线性微分方程的方法
- 批准号:
RGPIN-2020-06417 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Analytical and numerical methods for spectra of linear operators
线性算子谱的解析和数值方法
- 批准号:
389207-2010 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Postgraduate Scholarships - Doctoral
Analytical and numerical methods for spectra of linear operators
线性算子谱的解析和数值方法
- 批准号:
389207-2010 - 财政年份:2011
- 资助金额:
$ 1.31万 - 项目类别:
Postgraduate Scholarships - Doctoral
Analytical and numerical methods for spectra of linear operators
线性算子谱的解析和数值方法
- 批准号:
389207-2010 - 财政年份:2010
- 资助金额:
$ 1.31万 - 项目类别:
Postgraduate Scholarships - Doctoral
相似海外基金
Methods for Solving Nonlinear Differential Equations Describing Water Waves
求解描述水波的非线性微分方程的方法
- 批准号:
RGPIN-2020-06417 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Methods for Solving Nonlinear Differential Equations Describing Water Waves
求解描述水波的非线性微分方程的方法
- 批准号:
DGECR-2020-00358 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Launch Supplement
Methods for Solving Nonlinear Differential Equations Describing Water Waves
求解描述水波的非线性微分方程的方法
- 批准号:
RGPIN-2020-06417 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Regularisation methods for solving nonlinear ill-posed inverse problems
求解非线性不适定反问题的正则化方法
- 批准号:
DE120101707 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Early Career Researcher Award
Integration of nonlinear control, nonlinear programming and methods of numerically solving ordinary differential equations.
非线性控制、非线性规划和常微分方程数值求解方法的集成。
- 批准号:
23560535 - 财政年份:2011
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on Numerical Methods for Solving Nonlinear Systems and Their Applications
非线性系统求解的数值方法及其应用研究
- 批准号:
14550374 - 财政年份:2002
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Methods for Solving Linear and Nonlinear Mixed Integer Programs
求解线性和非线性混合整数规划的方法
- 批准号:
9908038 - 财政年份:1999
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant
Study on Numerical Methods for Solving Nonlinear Systems and Their Application to LSI Design
非线性系统求解的数值方法及其在大规模集成电路设计中的应用研究
- 批准号:
11650395 - 财政年份:1999
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RUI: Parallel methods and software for solving sparse nonlinear systems of equations in structured approaches
RUI:用结构化方法求解稀疏非线性方程组的并行方法和软件
- 批准号:
9102854 - 财政年份:1991
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Mathematical Sciences: Development and Applications of Iterative Methods for Solving Nonlinear Elliptic Eigenvalue Problems
数学科学:求解非线性椭圆特征值问题的迭代方法的发展和应用
- 批准号:
9007905 - 财政年份:1990
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant