Structural Properties and Strong Relaxations for Mixed Integer Polynomial Optimization

混合整数多项式优化的结构性质和强松弛

基本信息

  • 批准号:
    1634768
  • 负责人:
  • 金额:
    $ 32.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Research in mixed-integer nonlinear optimization has witnessed a significant growth at the theoretical, algorithmic and software levels over the last few years. While these new classes of algorithms have already had a remarkable impact across science, engineering, and economics, there exists a variety of important applications that these methods are unable to address. Compared to linear and convex nonlinear solvers, mixed-integer nonlinear solvers are very slow, cannot handle large-scale problems, and require a high level of user expertise. In fact, many optimization experts believe that in case of nonconvex nonlinear problems, one has to give up on either speed or the guarantee of solution quality. This project aims to address this trade-off, by developing foundational theory to construct strong and tractable polyhedral relaxations for a variety of nonconvex sets that frequently appear as building blocks of nonconvex mixed-integer nonlinear optimization problems. Successful resolution of the research goals of this project will potentially transform solver technology for mixed-integer nonlinear optimization problems; a very powerful framework that subsumes many real-world optimization problems. The project addresses the educational and outreach activities through graduate student mentoring, integration of research results in course work, and broad dissemination of the results of the research.Factorable programming is a widely-used technique for bounding general nonconvex functions. In particular, factorable reformulations of many nonconvex problems, including quadratic programs, multilinear programs, and polynomial optimization problems, contain a collection of multilinear equations. A main focus of this research is to study the facial structure of the convex hull of a set defined by a system of multilinear equations in the space of the original variables. Through an elegant hypergraph-based representation scheme, various structural properties, decomposition techniques, and lifting operations for such sets will be studied. A rigorous study of the strength and complexity of the relaxations will be performed, and new classes of polynomially-solvable optimization problems will be presented.
在过去的几年里,混合整数非线性优化的研究在理论、算法和软件层面上都有了显著的增长。虽然这些新的算法类别已经在科学,工程和经济学领域产生了显着的影响,但仍然存在这些方法无法解决的各种重要应用。与线性和凸非线性求解器相比,混合整数非线性求解器非常慢,不能处理大规模问题,并且需要高水平的用户专业知识。事实上,许多优化专家认为,在非凸非线性问题的情况下,必须放弃速度或解决方案质量的保证。该项目旨在解决这种权衡,通过发展基础理论来构建强大而易于处理的多面体松弛,用于各种非凸集,这些非凸集经常作为非凸混合整数非线性优化问题的构建块出现。该项目的研究目标的成功解决将潜在地改变混合整数非线性优化问题的求解器技术;一个非常强大的框架,包含许多现实世界的优化问题。该项目通过研究生指导、课程工作中研究成果的整合以及研究成果的广泛传播来解决教育和推广活动。可分解编程是一种广泛使用的技术,用于约束一般非凸函数。特别是,许多非凸问题(包括二次规划、多线性规划和多项式优化问题)的可因式分解重构包含多线性方程组的集合。本研究的一个主要焦点是研究由多线性方程组定义的集合的凸船体在原变量空间中的面结构。通过一个优雅的超图为基础的表示方案,各种结构特性,分解技术,和提升操作等集将进行研究。一个严格的研究的强度和复杂性的松弛将进行,并提出新的类多项式可解的优化问题。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the complexity of binary polynomial optimization over acyclic hypergraphs
非循环超图上二元多项式优化的复杂度
Chvátal Rank in Binary Polynomial Optimization
二元多项式优化中的 Chvátal Rank
  • DOI:
    10.1287/ijoo.2019.0049
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Del Pia, Alberto;Di Gregorio, Silvia
  • 通讯作者:
    Di Gregorio, Silvia
On the impact of running intersection inequalities for globally solving polynomial optimization problems
关于运行交集不等式对全局求解多项式优化问题的影响
  • DOI:
    10.1007/s12532-019-00169-z
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Del Pia, Alberto;Khajavirad, Aida;Sahinidis, Nikolaos V.
  • 通讯作者:
    Sahinidis, Nikolaos V.
On decomposability of Multilinear sets
  • DOI:
    10.1007/s10107-017-1158-z
  • 发表时间:
    2017-05
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Alberto Del Pia;Aida Khajavirad
  • 通讯作者:
    Alberto Del Pia;Aida Khajavirad
The Running Intersection Relaxation of the Multilinear Polytope
多线性多面体的运行交集弛豫
  • DOI:
    10.1287/moor.2021.1121
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Del Pia, Alberto;Khajavirad, Aida
  • 通讯作者:
    Khajavirad, Aida
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alberto Del Pia其他文献

Aggregation-based cutting-planes for packing and covering integer programs
用于打包和覆盖整数程序的基于聚合的切割平面
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Merve Bodur;Alberto Del Pia;Santanu S. Dey;M. Molinaro;S. Pokutta
  • 通讯作者:
    S. Pokutta
Relaxations of mixed integer sets from lattice-free polyhedra
Totally Unimodular Congestion Games
完全单模拥塞博弈
  • DOI:
    10.1137/1.9781611974782.37
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alberto Del Pia;M. Ferris;Carla Michini
  • 通讯作者:
    Carla Michini
On decomposability of the multilinear polytope and its implications in mixed-integer nonlinear optimization
多线性多面体的可分解性及其在混合整数非线性优化中的意义
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alberto Del Pia;Aida Khajavirad
  • 通讯作者:
    Aida Khajavirad
Ellipsoidal mixed-integer representability
  • DOI:
    10.1007/s10107-017-1196-6
  • 发表时间:
    2017-09-15
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Alberto Del Pia;Jeffrey Poskin
  • 通讯作者:
    Jeffrey Poskin

Alberto Del Pia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alberto Del Pia', 18)}}的其他基金

Support for NSF Student Poster Session at the 2016 Mixed Integer Programming Workshop; Coral Gables, Florida; 23-26 May 2016
支持 2016 年混合整数编程研讨会上的 NSF 学生海报会议;
  • 批准号:
    1638802
  • 财政年份:
    2016
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant

相似海外基金

Exploration of Emergent Functional Properties in Topological Semimetals with Strong Magnetic Coupling
强磁耦合拓扑半金属的涌现功能特性探索
  • 批准号:
    22KJ0212
  • 财政年份:
    2023
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Strong Gravitational Fields: Theoretical Properties and Observational Signatures
强引力场:理论特性和观测特征
  • 批准号:
    2309191
  • 财政年份:
    2023
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Measuring the Physical Properties of Dark Matter with Strong Gravitational Lensing
合作提案:用强引力透镜测量暗物质的物理特性
  • 批准号:
    2206315
  • 财政年份:
    2022
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant
Generalized Association Rule Mining for Representing Latent Properties and its Abstraction Based on Strong Closedness Compression
基于强闭性压缩的隐属性表示广义关联规则挖掘及其抽象
  • 批准号:
    22K12165
  • 财政年份:
    2022
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Engineering of strong light-matter coupling in organic semiconductors: a novel way to control materials' properties
有机半导体中强光-物质耦合工程:控制材料性能的新方法
  • 批准号:
    569543-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Collaborative Research: Measuring the physical properties of darkmatter with strong gravitational lensing
合作研究:利用强引力透镜测量暗物质的物理特性
  • 批准号:
    2205100
  • 财政年份:
    2022
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant
A theoretical study on differences in scope properties between weak and strong quantifiers in English and Japanese
英日强弱量词范围属性差异的理论研究
  • 批准号:
    21K00581
  • 财政年份:
    2021
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Measuring the properties of dark energy and dark matter with strong gravitational lensing and stellar dynamics
利用强引力透镜和恒星动力学测量暗能量和暗物质的特性
  • 批准号:
    2465783
  • 财政年份:
    2020
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Studentship
Study of Gamma-Ray Vortecies on Production Process and Properties in Astronomical Syetem under Strong Magnetic Field, and Explore of Methods to Idenitify Vortex Photon in Experiments
强磁场下天文系统中伽马射线涡旋产生过程和性质的研究及涡旋光子实验识别方法的探索
  • 批准号:
    19K03833
  • 财政年份:
    2019
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The ISM properties of extremely strong emission line galaxies discovered with Subaru/HSC
Subaru/HSC 发现的极强发射线星系的 ISM 特性
  • 批准号:
    18K13578
  • 财政年份:
    2018
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了