Controlling Microstructures and Interfaces in Oxide Thin Films via Electric Field Processing

通过电场处理控制氧化物薄膜中的微观结构和界面

基本信息

  • 批准号:
    1634955
  • 负责人:
  • 金额:
    $ 34.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-15 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

A magnetoelectric material is one for which an external magnetic field causes an electric response or an external electric field causes a magnetic response. Historically, magnetoelectric behavior has found few technological applications because the response was too small in most materials showing such behavior. When two different materials - one responsive to an electric field, and another responsive to magnetic field - are combined into a composite material, however, magnetoelectric behavior is much stronger. This award supports fundamental research to understand the behavior of such composite magnetoelectric materials, in particular the interfaces between the two materials. In addition to understanding the interfaces in these materials, a new manufacturing approach will be investigated, which reduces the manufacturing temperature by applying an electric field and thus reduces the mixing of layers across the interfaces, further improving magnetoelectric properties. The results from this research can benefit the U.S. economy, defense, security and society through applications such as highly sensitive magnetic field detection, microwave filters and advanced logic devices. This research involves several disciplines including manufacturing, materials science, composite materials, magnetics, and ferroelectricity. The multi-disciplinary approach will help broaden participation of underrepresented groups in research and positively impact engineering education. This research supports research focused on using nanoimprint lithography to create heterogeneous magnetoelectric thin film composites with unique interface structures between the magnetostrictive and piezoelectric materials. The underlying hypothesis is that the functional behavior is driven by interfacial strain coupling, and thus controlling the interface is critical. Here the manufacturing of heterogeneous oxide multilayers is advanced by understanding and controlling both the nanostructure-properties relationships of the individual phases and the interfaces simultaneously through electric field processing. The research involves significant interplay and feedback between processing, structural properties and physical properties. Through this research, the scientific knowledge of magnetic, ferroelectric and magnetoelectric materials will be advanced, including: an understanding of the role of stoichiometric variations of Ni, Zn, Co and Fe on electromagnetic and magnetostrictive properties of nickel ferrite; an understanding of crystallization, densification, grain growth and texturing of each phase separately via electric field processing; the creation of heterogeneous multilayers with a tailored interface geometry; an understanding of co-firing multilayers via conventional sintering; and understanding and controlling the interdiffusion of chemical species during electric field processing of co-fired composites.
磁电材料是指外部磁场引起电响应或外部电场引起磁响应的材料。从历史上看,磁电行为很少在技术上得到应用,因为在大多数表现出这种行为的材料中,响应太小。然而,当两种不同的材料--一种对电场响应,另一种对磁场响应--组合成复合材料时,磁电行为要强得多。该奖项支持基础研究,以了解这种复合磁电材料的行为,特别是两种材料之间的界面。除了了解这些材料中的界面外,还将研究一种新的制造方法,该方法通过施加电场来降低制造温度,从而减少界面上的层混合,进一步改善磁电性能。这项研究的成果可以通过高敏感磁场检测、微波过滤器和先进逻辑器件等应用,造福于美国的经济、国防、安全和社会。这项研究涉及多个学科,包括制造、材料科学、复合材料、磁学和铁电。多学科方法将有助于扩大代表不足的群体对研究的参与,并对工程教育产生积极影响。这项研究支持了利用纳米压印光刻技术在磁致伸缩材料和压电材料之间制造具有独特界面结构的异质磁电薄膜复合材料的研究。潜在的假设是,功能行为是由界面应变耦合驱动的,因此控制界面是至关重要的。在这里,通过电场处理同时了解和控制各个相和界面的纳米结构-性能关系,从而促进了异质氧化物多层膜的制备。这项研究涉及加工、结构特性和物理特性之间的显著相互作用和反馈。通过这项研究,将提高对磁性、铁电和磁电材料的科学知识,包括:了解镍、锌、钴和铁的化学计量变化对镍铁氧体的电磁和磁致伸缩性能的作用;了解通过电场处理分别对每一相的结晶、致密化、晶粒生长和织构的影响;创建具有定制界面几何形状的异质多层膜;了解通过常规烧结方法共烧多层膜;以及了解和控制共烧复合材料电场处理过程中化学物种的相互扩散。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The origin of chemical inhomogeneity in lead-free potassium sodium niobate ceramic: Competitive chemical reaction during solid-state synthesis
无铅铌酸钾钠陶瓷化学不均匀性的根源:固态合成过程中的竞争化学反应
  • DOI:
    10.1016/j.actamat.2021.116833
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Thong, Hao-Cheng;Payne, Alexis;Li, Jia-Wang;Cheng, Yue-Yu-Shan;Jones, Jacob L.;Wang, Ke
  • 通讯作者:
    Wang, Ke
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jacob Jones其他文献

Fate of per- and polyfluoroalkyl substances through commercial composting facilities
全氟和多氟烷基物质在商业堆肥设施中的去向
  • DOI:
    10.1016/j.biortech.2025.132485
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    9.000
  • 作者:
    Sali Khair Biek;Leadin S. Khudur;Matthew Askeland;Jacob Jones;Kriushnapriya Sundararajan;Shivaram Lakshminarayanan;Andrew S. Ball
  • 通讯作者:
    Andrew S. Ball
Biomechanical Comparison of Pediatric Female Ballet Dancers With and Without Pain
小儿芭蕾舞女舞者有痛与无痛的生物力学比较
  • DOI:
    10.53646/n4ejsa24
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Erdman;Sophia Ulman;Jessica Dabis;Shane Miller;Jacob Jones;Henry B. Ellis;Jane Chung
  • 通讯作者:
    Jane Chung
Translating Data into Discovery: Analysis of 10 Years of CDC Data of Mortality Indicates Level of Attainment of Education as a Suicide Risk Factor in USA
将数据转化为发现:对 CDC 10 年死亡率数据的分析表明,受教育程度是美国的自杀风险因素
  • DOI:
    10.17140/sbrpoj-2-107
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gilberto Díaz;Jacob Jones;Toni Brandt;Todd Gary;A. Yenamandra
  • 通讯作者:
    A. Yenamandra
Experimental study of analogue vent erosion towards nozzle shapes
喷嘴形状的模拟喷口侵蚀实验研究
  • DOI:
    10.1016/j.jvolgeores.2018.10.022
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    James McNeal;Jacob Jones;R. B. Cal;L. Mastin;Dave Kim;S. Solovitz
  • 通讯作者:
    S. Solovitz
A case of a sural neuroma as a cause of lateral ankle pain
  • DOI:
    10.1016/j.foot.2012.01.006
  • 发表时间:
    2012-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jacob Jones;Katherine Neiderer;Billy Martin;David Jolley;James F. Dancho
  • 通讯作者:
    James F. Dancho

Jacob Jones的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jacob Jones', 18)}}的其他基金

STC: Science and Technologies for Phosphorus Sustainability (STEPS) Center
STC:磷可持续性科学技术 (STEPS) 中心
  • 批准号:
    2019435
  • 财政年份:
    2021
  • 资助金额:
    $ 34.62万
  • 项目类别:
    Cooperative Agreement
NNCI: North Carolina Research Triangle Nanotechnology Network (RTNN)
NNCI:北卡罗来纳州研究三角纳米技术网络 (RTNN)
  • 批准号:
    2025064
  • 财政年份:
    2020
  • 资助金额:
    $ 34.62万
  • 项目类别:
    Cooperative Agreement
RET Site: Atomic Scale Design and Engineering
RET 站点:原子尺度设计与工程
  • 批准号:
    1855180
  • 财政年份:
    2019
  • 资助金额:
    $ 34.62万
  • 项目类别:
    Standard Grant
NNCI: North Carolina Research Triangle Nanotechnology Network (RTNN)
NNCI:北卡罗来纳州研究三角纳米技术网络 (RTNN)
  • 批准号:
    1542015
  • 财政年份:
    2015
  • 资助金额:
    $ 34.62万
  • 项目类别:
    Cooperative Agreement
IRES: U.S. - Australia International Research Experience for Students: Materials for Energy Storage and Transduction
IRES:美国-澳大利亚学生国际研究经验:能量存储和传导材料
  • 批准号:
    1357113
  • 财政年份:
    2014
  • 资助金额:
    $ 34.62万
  • 项目类别:
    Standard Grant
CAREER: Time-Resolved Structure-Property Relationships in Piezoelectric Ceramics
职业:压电陶瓷中的时间分辨结构-性能关系
  • 批准号:
    1445926
  • 财政年份:
    2014
  • 资助金额:
    $ 34.62万
  • 项目类别:
    Continuing Grant
Collaborative Research: Extrinsic Size Effects in Ferroelectric Thin Films
合作研究:铁电薄膜的外在尺寸效应
  • 批准号:
    1409399
  • 财政年份:
    2014
  • 资助金额:
    $ 34.62万
  • 项目类别:
    Continuing Grant
U.S. Australia International Research Experiences for Students (IRES): Materials for Energy Technologies
美国澳大利亚学生国际研究经验(IRES):能源技术材料
  • 批准号:
    1129412
  • 财政年份:
    2011
  • 资助金额:
    $ 34.62万
  • 项目类别:
    Standard Grant
CAREER: Time-Resolved Structure-Property Relationships in Piezoelectric Ceramics
职业:压电陶瓷中的时间分辨结构-性能关系
  • 批准号:
    0746902
  • 财政年份:
    2008
  • 资助金额:
    $ 34.62万
  • 项目类别:
    Continuing Grant
IRES: U.S.-Swiss International Research Experience for Students: Science and Engineering of Piezoelectric Materials
IRES:美国-瑞士学生国际研究经验:压电材料科学与工程
  • 批准号:
    0755170
  • 财政年份:
    2008
  • 资助金额:
    $ 34.62万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
  • 批准号:
    2323936
  • 财政年份:
    2023
  • 资助金额:
    $ 34.62万
  • 项目类别:
    Standard Grant
Construction of control technology for cell behavior and bone tissue formation using metallographic microstructures
利用金相微观结构构建细胞行为和骨组织形成的控制技术
  • 批准号:
    23H01711
  • 财政年份:
    2023
  • 资助金额:
    $ 34.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Understanding the Dynamics of Periodic Planar Microstructures Responding to Colliding Micro-Particles
了解周期性平面微结构响应碰撞微粒的动力学
  • 批准号:
    2318110
  • 财政年份:
    2023
  • 资助金额:
    $ 34.62万
  • 项目类别:
    Standard Grant
Tailored Microstructures via Thermoelectric-Magnetohydrodynamics for Additive Manufacturing (TEAM)
通过热电磁流体动力学定制微结构用于增材制造 (TEAM)
  • 批准号:
    EP/W032147/1
  • 财政年份:
    2023
  • 资助金额:
    $ 34.62万
  • 项目类别:
    Research Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
  • 批准号:
    2323938
  • 财政年份:
    2023
  • 资助金额:
    $ 34.62万
  • 项目类别:
    Standard Grant
Transitions: Emergent Microstructures of Protocells
转变:原始细胞的新兴微观结构
  • 批准号:
    2318736
  • 财政年份:
    2023
  • 资助金额:
    $ 34.62万
  • 项目类别:
    Standard Grant
Tailored Microstructures via Thermoelectric-Magnetohydrodynamics for Additive Manufacturing (TEAM)
通过热电磁流体动力学定制微结构用于增材制造 (TEAM)
  • 批准号:
    EP/W031167/1
  • 财政年份:
    2023
  • 资助金额:
    $ 34.62万
  • 项目类别:
    Research Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
  • 批准号:
    2323937
  • 财政年份:
    2023
  • 资助金额:
    $ 34.62万
  • 项目类别:
    Standard Grant
Elucidate the formation mechanism of complex eutectic microstructures
阐明复杂共晶微观结构的形成机制
  • 批准号:
    22KJ2139
  • 财政年份:
    2023
  • 资助金额:
    $ 34.62万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: Manufacturing Soft Functional Composites through Mechanically Induced Assembly of Liquid Microstructures in Elastic Films
职业:通过弹性薄膜中液体微结构的机械诱导组装制造软功能复合材料
  • 批准号:
    2238754
  • 财政年份:
    2023
  • 资助金额:
    $ 34.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了