Tailored Microstructures via Thermoelectric-Magnetohydrodynamics for Additive Manufacturing (TEAM)
通过热电磁流体动力学定制微结构用于增材制造 (TEAM)
基本信息
- 批准号:EP/W032147/1
- 负责人:
- 金额:$ 57.58万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Additive Manufacturing (AM), also termed 3D printing, involves successively adding thin layers of new material formed by melting alloy powders or wires and solidifying them onto prior layers to construct 3D components. This process directly builds intricately shaped parts impossible to create using traditional techniques. Further, AM promises to be both more energy and materials efficient. Potential applications are far reaching, including biomedical, energy and aerospace. However, AM components can suffer from microstructural features that may lead to degraded properties, such as porosity and epitaxial grain growth. Porosity can form from gas bubbles entrained in the solidification front, leading to voids in the final built. Epitaxial grain growth occurs when new grains take on the crystal orientation of the previous layer, producing often undesirable direction dependent properties. We hope to control these features using magnetic fields acting on Thermoelectric (TE) currents.TE effects translate temperature variations at the junction of two conductive materials into electric current. They are well known in common applications such as Peltier coolers, TE generators for waste heat recovery and in thermocouples. In this proposal we aim use the interaction of thermoelectric currents and applied magnetic fields to generate fluid flow in the molten pool of metal that forms material in the AM process. This interaction is called Thermoelectric Magnetohydrodynamics, or TEMHD. Our feasibility studies indicate that TEMHD can transform the microstructure in AM components, preventing the formation of microstructural features such as porosity or epitaxial growth. We will show that thermoelectric effects are a natural and inherent part of AM processes, with high currents forming due to the huge thermal gradients encountered in AM. We will apply controlled external magnetic fields, causing these currents to interact and generate a Lorentz force that drives TEMHD flow. Our preliminary numerical predictions show that even a moderate magnetic field generated by permanent magnets is sufficient for TEMHD to dominate the melt pool hydrodynamics and that the flow magnitude is highly sensitive to the orientation and magnitude of the magnetic field. This sensitivity will enable us to modulate the heat, mass and momentum transport, enabling control of microstructural evolution, including epitaxial growth and gas entrainment. Our vision is to reveal the fundamental mechanisms that TEMHD introduces to AM and to then ultimately develop a pathway to exploit it in industrial applications producing improved and consistent material properties of components.To achieve these goals the investigators will employ state-of-the-art experimental and numerical modelling techniques. High speed in situ synchrotron X-ray radiography of the process will generate data for validation of the numerical model and provide benchmarks for the wider scientific community. The numerical model will capture the complex interactions in the melt pool and provide understanding of the complex physical mechanisms at work. Theoretical predictions from the model will guide the experimental programme, while direct observations will guide the numerical model development. With a validated numerical model, a parametric study of the magnetic field conditions along with key AM processing conditions will be conducted to determine conditions required to produce microstructures that give the properties required for each application. The ability to use TEMHD to design the microstructures will be demonstrated in the experimental programme. Throughout the project we will seek input from our industrial partners, and during the latter stages we will hold a workshop to develop translational pathways for scaling and implementing these techniques to the next generation of AM machines.
增材制造(AM),也称为3D打印,涉及连续添加通过熔化合金粉末或线材形成的新材料薄层,并将其固化到先前的层上以构建3D组件。这个过程直接构建了使用传统技术无法创建的复杂形状的零件。此外,增材制造有望提高能源和材料效率。潜在的应用范围广泛,包括生物医学、能源和航空航天。然而,AM部件可能遭受可能导致性能退化的微观结构特征,例如孔隙率和外延晶粒生长。孔隙可以由凝固前沿中夹带的气泡形成,导致最终构建中的空隙。当新的晶粒呈现前一层的晶体取向时,发生外延晶粒生长,产生通常不期望的方向依赖性质。我们希望利用磁场作用于热电(TE)电流来控制这些特性。TE效应将两种导电材料交界处的温度变化转化为电流。它们在常见应用中是众所周知的,例如Peltier冷却器、用于废热回收的TE发电机和热电偶。在该提案中,我们的目标是使用热电流和施加的磁场的相互作用,以在AM工艺中形成材料的金属熔池中产生流体流动。这种相互作用被称为热电磁流体动力学,或TEMHD。我们的可行性研究表明,TEMHD可以改变AM组件的微观结构,防止形成微观结构特征,如孔隙率或外延生长。我们将表明,热电效应是AM过程的自然和固有的一部分,由于AM中遇到的巨大的热梯度而形成高电流。我们将施加受控的外部磁场,使这些电流相互作用并产生驱动TEMHD流的洛伦兹力。我们的初步数值预测表明,即使是一个温和的磁场所产生的永磁体是足够的TEMHD占主导地位的熔池流体力学和流量大小是高度敏感的磁场的方向和大小。这种灵敏度将使我们能够调节热量,质量和动量传输,使微观结构的演变,包括外延生长和气体夹带的控制。我们的愿景是揭示TEMHD引入AM的基本机制,并最终开发出一条在工业应用中利用其生产改进和一致的材料性能的组件的途径。为了实现这些目标,研究人员将采用最先进的实验和数值模拟技术。该过程的高速原位同步加速器X射线照相术将产生用于验证数值模型的数据,并为更广泛的科学界提供基准。数值模型将捕捉熔池中复杂的相互作用,并提供对工作中复杂物理机制的理解。模型的理论预测将指导实验方案,而直接观测将指导数值模型的开发。利用经过验证的数值模型,将对磁场条件沿着关键AM加工条件进行参数化研究,以确定生产提供每种应用所需性能的微结构所需的条件。使用TEMHD设计微结构的能力将在实验方案中得到证明。在整个项目过程中,我们将寻求工业合作伙伴的投入,在后期阶段,我们将举办一个研讨会,以开发将这些技术扩展和实施到下一代AM机器的转化途径。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
In situ characterisation of surface roughness and its amplification during multilayer single-track laser powder bed fusion additive manufacturing
- DOI:10.1016/j.addma.2023.103809
- 发表时间:2023-10
- 期刊:
- 影响因子:11
- 作者:Alisha Bhatt;Yuze Huang;C. L. Leung;Gowtham Soundarapandiyan;S. Marussi;Saurabh Shah;Robert C. Atwood-Robe
- 通讯作者:Alisha Bhatt;Yuze Huang;C. L. Leung;Gowtham Soundarapandiyan;S. Marussi;Saurabh Shah;Robert C. Atwood-Robe
Thermoelectric Magnetohydrodynamic Control of Melt Pool Flow During Laser Directed Energy Deposition Additive Manufacturing
- DOI:10.2139/ssrn.4329316
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Xianqiang Fan;Tristan G. Fleming;David Tien Rees;Yuze Huang;S. Marussi;C. L. Leung;R. Atwood;
- 通讯作者:Xianqiang Fan;Tristan G. Fleming;David Tien Rees;Yuze Huang;S. Marussi;C. L. Leung;R. Atwood;
Modulating Meltpool Dynamics and Microstructure using Thermoelectric Magnetohydrodynamics in Additive Manufacturing
- DOI:10.1088/1757-899x/1281/1/012022
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:A. Kao;C. Tonry;P. Soar;I. Krastiņš;X. Fan;PD Lee;K. Pericleous
- 通讯作者:A. Kao;C. Tonry;P. Soar;I. Krastiņš;X. Fan;PD Lee;K. Pericleous
Controlling solute channel formation using magnetic fields
- DOI:10.1016/j.actamat.2023.119107
- 发表时间:2023-09
- 期刊:
- 影响因子:9.4
- 作者:Xianqiang Fan;N. Shevchenko;C. Tonry;S. Clark;R. Atwood;S. Eckert;K. Pericleous;P. D. Lee;
- 通讯作者:Xianqiang Fan;N. Shevchenko;C. Tonry;S. Clark;R. Atwood;S. Eckert;K. Pericleous;P. D. Lee;
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Kao其他文献
Transvenous Phrenic Nerve Stimulation Effectiveness is Sustained at 18 Months: Data From the Remede System Pivotal Trial
- DOI:
10.1016/j.chest.2017.08.764 - 发表时间:
2017-10-01 - 期刊:
- 影响因子:
- 作者:
Andrew Kao;Ralph Augostini;Piotr Ponikowski;Lee Goldberg;Shahrokh Javaheri;Olaf Oldenburg;Christoph Stellbrink;Maria Rosa Costanzo - 通讯作者:
Maria Rosa Costanzo
Caregiver burden before heart transplantation and long-term mechanical circulatory support: Findings from the usustain/uing qualuit/uy of life of the aged: Transplant or mechanical support (emSUSTAIN-IT/em) study
心脏移植前和长期机械循环支持期间的照护者负担:来自美国老年患者生活质量研究(USustain/UING QualUIT/UY):移植或机械支持(EMSUSTAIN-IT/EM)的结果
- DOI:
10.1016/j.healun.2023.01.015 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:6.000
- 作者:
Ike S. Okwuosa;Allen Anderson;Michael Petty;Tingqing Wu;Adin-Cristian Andrei;Andrew Kao;John A. Spertus;Duc T. Pham;Clyde W. Yancy;Mary Amanda Dew;Eileen Hsich;William Cotts;Justin Hartupee;Salpy Pamboukian;Francis Pagani;Brent Lampert;Maryl Johnson;Margaret Murray;Koji Tekeda;Melana Yuzefpolskaya;Kathleen L. Grady - 通讯作者:
Kathleen L. Grady
Surveillance with Dual Non-invasive Testing for Acute Cellular Rejection After Heart Transplantation: Outcomes from the Surveillance HeartCare Outcomes Registry (SHORE).
对心脏移植后急性细胞排斥的双重非侵入性检测进行监测:来自监测 HeartCare 结果登记处 (SHORE) 的结果。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
K. Khush;Shelley A. Hall;Andrew Kao;Nirav Raval;Ravi Dhingra;Palak Shah;L. Bellumkonda;Ashwin Ravichandran;A. Van Bakel;N. Uriel;Snehal Patel;Sean P. Pinney;E. DePasquale;David Baran;Kevin Pinney;K. Oreschak;J. Kobulnik;Ling Shen;Jeffrey Teuteberg - 通讯作者:
Jeffrey Teuteberg
The Value of an Advanced Practice Nurse-Led Heart Failure Clinic as Demonstrated by Improvements in Kansas City Cardiomyopathy Questionnaire Scores
- DOI:
10.1016/j.cardfail.2007.06.700 - 发表时间:
2007-08-01 - 期刊:
- 影响因子:
- 作者:
Felicia Menefee;John Spertus;Janet Lipke;Rebecca VanScoy;Anthony Magalski;Claudia Fantroy;Andrew Kao - 通讯作者:
Andrew Kao
Exporting the Surveillance State Via Trade in AI
通过人工智能贸易输出监控状态
- DOI:
10.2139/ssrn.4574620 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Martin Beraja;Andrew Kao;David Yang;Noam Yuchtman - 通讯作者:
Noam Yuchtman
Andrew Kao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Tailored Microstructures via Thermoelectric-Magnetohydrodynamics for Additive Manufacturing (TEAM)
通过热电磁流体动力学定制微结构用于增材制造 (TEAM)
- 批准号:
EP/W031167/1 - 财政年份:2023
- 资助金额:
$ 57.58万 - 项目类别:
Research Grant
Collaborative Research: Characterization of Transport Properties and Microstructures of Battery Electrolytes via In Situ Spectroscopy
合作研究:通过原位光谱表征电池电解质的传输特性和微观结构
- 批准号:
2243098 - 财政年份:2022
- 资助金额:
$ 57.58万 - 项目类别:
Standard Grant
Collaborative Research: Characterization of Transport Properties and Microstructures of Battery Electrolytes via In Situ Spectroscopy
合作研究:通过原位光谱表征电池电解质的传输特性和微观结构
- 批准号:
2120559 - 财政年份:2021
- 资助金额:
$ 57.58万 - 项目类别:
Standard Grant
Probing the Evolution of Granular Microstructures during Dynamic Annealing via Integrated Three-Dimensional Experiments and Simulations
通过集成三维实验和模拟探讨动态退火过程中颗粒微观结构的演变
- 批准号:
2104786 - 财政年份:2021
- 资助金额:
$ 57.58万 - 项目类别:
Continuing Grant
Collaborative Research: Characterization of Transport Properties and Microstructures of Battery Electrolytes via In Situ Spectroscopy
合作研究:通过原位光谱表征电池电解质的传输特性和微观结构
- 批准号:
2120555 - 财政年份:2021
- 资助金额:
$ 57.58万 - 项目类别:
Standard Grant
CAREER: High-Aspect-Ratio Multi-Material Three-Dimensional Microstructures via Microfluidic Direct Laser Writing
职业:通过微流控激光直接写入的高纵横比多材料三维微结构
- 批准号:
1943356 - 财政年份:2020
- 资助金额:
$ 57.58万 - 项目类别:
Standard Grant
Improved metallurgical manufacture via multi-axial testing of microstructures
通过微观结构的多轴测试改进冶金制造
- 批准号:
2276384 - 财政年份:2019
- 资助金额:
$ 57.58万 - 项目类别:
Studentship
TRIPODS+X:RES:Collaborative Research: Improving Templated Microstructures via Topological Data Analysis
TRIPODS X:RES:协作研究:通过拓扑数据分析改进模板化微结构
- 批准号:
1839252 - 财政年份:2018
- 资助金额:
$ 57.58万 - 项目类别:
Standard Grant
TRIPODS+X:RES:Collaborative Research: Improving Templated Microstructures via Topological Data Analysis
TRIPODS X:RES:协作研究:通过拓扑数据分析改进模板化微观结构
- 批准号:
1839267 - 财政年份:2018
- 资助金额:
$ 57.58万 - 项目类别:
Standard Grant
CAREER: Controlling Polymer Degradation, Microstructures, and Sequences via Living Alternating Polymerization of Cyclopropenes and Low-Strain Cyclic Olefins
职业:通过环丙烯和低应变环烯烃的活性交替聚合来控制聚合物降解、微观结构和序列
- 批准号:
1553780 - 财政年份:2016
- 资助金额:
$ 57.58万 - 项目类别:
Continuing Grant














{{item.name}}会员




