Ultrafast Laser Micromachining to Form Capillary-Sized Networks within Bioprinted Constructs
超快激光微加工在生物打印结构内形成毛细管大小的网络
基本信息
- 批准号:1634997
- 负责人:
- 金额:$ 9.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bioprinting has emerged as a promising approach to generate functional tissues and organs, as well as tissue analogs for regenerative medicine, pharmacology, toxicology, and disease modeling. Bioprinting technologies generally involve the encapsulation of living cells within biocompatible bioinks (such as hydrogels). However, with current technologies, capillary-sized networks cannot be printed within bioprinted constructs. These capillary-sized networks are critical for maintaining viability of tissue constructs and, therefore, are at the center of establishing the widespread application of current technologies. Ultrafast pulsed lasers are uniquely capable of machining capillary-sized networks within bioprinted constructs, however the impact of ultrafast laser machining on biological constructs is not known. This award supports fundamental research on effects of ultrafast laser micromachining on cellular damage. Research results will be useful for the development of a novel hybrid process combining laser micromachining and stereolithography bioprinting to produce bioprinted constructs that contains capillary-sized networks.The research objective is to establish the relationship between ultrafast laser variables and cellular damage within cell-laden gelatin-based hydrogel biomaterials. To achieve this research objective, hydrogel constructs will be prepared by encapsulating mesenchymal progenitor cells within gelatin methacrylate hydrogel via ultraviolet crosslinking. Femtosecond laser multiphoton absorption process will be used to micromachine channels (about 10 microns in diameter) within the cell-laden hydrogel constructs. These constructs will have different cell densities (10,000 - 10,000,000 cells/mL), hydrogel concentration (7-18% w/v), and photoinitiator concentration (0.05-0.5% w/v). Experiments will be conducted under different ultrafast laser parameters: laser fluency from 0 to 25 J/cm^2, pulse energy from 0 to 100 nJ, and scanning speed from 0.1 to 10 mm/s. Cellular damage within hydrogel constructs will be evaluated by the following parameters: radial zones of cellular viability measured by confocal imaging of calcein AM-ethidium homodimer biomarkers, DNA damage measured using Comet assay, and function (ability to proliferate and produce extracellular matrix) measured using confocal imaging of EdU and Movat's fluorescent biomarkers.
生物打印已成为一种有前途的方法,用于生成功能性组织和器官,以及用于再生医学、药理学、毒理学和疾病建模的组织类似物。生物打印技术通常涉及将活细胞封装在生物相容性生物墨水(例如水凝胶)内。然而,利用目前的技术,毛细血管大小的网络不能在生物打印的结构中打印。这些毛细血管大小的网络对于维持组织构建体的活力至关重要,因此,是建立当前技术的广泛应用的中心。超快脉冲激光能够在生物打印结构中加工毛细血管大小的网络,但超快激光加工对生物结构的影响尚不清楚。该奖项支持超快激光微加工对细胞损伤影响的基础研究。研究结果将有助于开发一种新的混合工艺,将激光微加工和立体光刻生物打印相结合,以生产包含毛细血管大小networks.The研究目标的生物打印结构,建立超快激光变量和细胞损伤之间的关系内细胞负载明胶为基础的水凝胶生物材料。为了实现这一研究目标,将通过紫外线交联将间充质祖细胞包封在明胶甲基丙烯酸酯水凝胶内来制备水凝胶构建体。飞秒激光多光子吸收过程将用于在载有细胞的水凝胶构建体内微加工通道(直径约10微米)。这些构建体将具有不同的细胞密度(10,000 - 10,000,000个细胞/mL)、水凝胶浓度(7- 18%w/v)和光引发剂浓度(0.05- 0.5%w/v)。实验将在不同的超快激光参数下进行:激光通量从0到25 J/cm^2,脉冲能量从0到100 nJ,扫描速度从0.1到10 mm/s。将通过以下参数评价水凝胶构建体内的细胞损伤:通过钙黄绿素AM-乙锭同二聚体生物标志物的共聚焦成像测量的细胞活力的径向区,使用彗星测定测量的DNA损伤,以及使用EdU和Movat荧光生物标志物的共聚焦成像测量的功能(增殖和产生细胞外基质的能力)。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Conductive gelatin methacrylate-poly(aniline) hydrogel for cell encapsulation
用于细胞封装的导电明胶甲基丙烯酸酯-聚苯胺水凝胶
- DOI:10.1088/2057-1976/aa91f9
- 发表时间:2018
- 期刊:
- 影响因子:1.4
- 作者:Sawyer, Stephen W;Dong, Ping;Venn, Sarah;Ramos, Andrew;Quinn, David;Horton, Jason A;Soman, Pranav
- 通讯作者:Soman, Pranav
Gelatin methacrylate-alginate hydrogel with tunable viscoelastic properties
- DOI:10.3934/matersci.2017.2.363
- 发表时间:2017-01-01
- 期刊:
- 影响因子:1.8
- 作者:Chen, Yong X.;Cain, Brian;Soman, Pranav
- 通讯作者:Soman, Pranav
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pranav Soman其他文献
Pranav Soman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pranav Soman', 18)}}的其他基金
EAGER/Cybermanufacturing: Smart Manufacturing Platform for Tissue Engineering
EAGER/Cybermanufacturing:组织工程智能制造平台
- 批准号:
1547095 - 财政年份:2015
- 资助金额:
$ 9.98万 - 项目类别:
Standard Grant
相似国自然基金
基于激光与管电极电解同步复合(Laser-STEM)的低损伤大深度小孔加工技术基础研究
- 批准号:51905525
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
长链非编码RNA lnc-LASER通过HNF-1α-PCSK9 调控肝脏胆固醇平衡的机制研究
- 批准号:81600343
- 批准年份:2016
- 资助金额:17.5 万元
- 项目类别:青年科学基金项目
相似海外基金
System for 3D femtosecond laser-based micromachining
基于飞秒激光的 3D 微加工系统
- 批准号:
537273289 - 财政年份:2024
- 资助金额:
$ 9.98万 - 项目类别:
Major Research Instrumentation
Characterization of nanoparticles generated during femtosecond laser micromachining in air
空气中飞秒激光微加工过程中产生的纳米颗粒的表征
- 批准号:
573753-2022 - 财政年份:2022
- 资助金额:
$ 9.98万 - 项目类别:
University Undergraduate Student Research Awards
Laser-micromachining of 3D injection molds to fabricate easy-flow polymeric containers
对 3D 注塑模具进行激光微加工以制造易流动的聚合物容器
- 批准号:
543630-2019 - 财政年份:2021
- 资助金额:
$ 9.98万 - 项目类别:
Collaborative Research and Development Grants
Laser-micromachining of 3D injection molds to fabricate easy-flow polymeric containers
对 3D 注塑模具进行激光微加工以制造易流动的聚合物容器
- 批准号:
543630-2019 - 财政年份:2020
- 资助金额:
$ 9.98万 - 项目类别:
Collaborative Research and Development Grants
Ultrafast laser micromachining in orthopediac surgery
骨科手术中的超快激光微加工
- 批准号:
552501-2020 - 财政年份:2020
- 资助金额:
$ 9.98万 - 项目类别:
University Undergraduate Student Research Awards
A femtosecond laser micromachining facility for a wide range of materials
适用于多种材料的飞秒激光微加工设备
- 批准号:
LE190100066 - 财政年份:2019
- 资助金额:
$ 9.98万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Fiber laser for high-rate ultrafast micromachining
用于高速超快微加工的光纤激光器
- 批准号:
RTI-2020-00326 - 财政年份:2019
- 资助金额:
$ 9.98万 - 项目类别:
Research Tools and Instruments
Laser-micromachining of 3D injection molds to fabricate easy-flow polymeric containers
对 3D 注塑模具进行激光微加工以制造易流动的聚合物容器
- 批准号:
543630-2019 - 财政年份:2019
- 资助金额:
$ 9.98万 - 项目类别:
Collaborative Research and Development Grants
Micromachining using extreme ultraviolet radiation from laser-produced plasma
使用激光产生的等离子体的极紫外辐射进行微加工
- 批准号:
18K04770 - 财政年份:2018
- 资助金额:
$ 9.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Laser high precision micromachining system for fault correction of flat panel X-ray detectors
用于平板X射线探测器故障校正的激光高精度微加工系统
- 批准号:
494477-2016 - 财政年份:2016
- 资助金额:
$ 9.98万 - 项目类别:
Engage Grants Program