Modeling, Analysis and Control Design for Spatially Distributed Systems with Application to Wind Farms
风电场空间分布式系统建模、分析和控制设计
基本信息
- 批准号:1635430
- 负责人:
- 金额:$ 32.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This work will address challenges arising in the modeling and control of wind farms, enabling power grid operators both to accurately predict capacity under varying operating conditions, as well as to track a desired power output profile. In contrast to controllers that simply maximize output power, this enhanced operational flexibility will allow wind farms to support utilities with valuable services such as frequency regulation and power ramping. The key technical innovation of this project is a reduced-order model that accurately captures dynamic interaction between turbines and the effect of turbine wakes, while remaining tractable enough for real-time computation. The model and controls will be tested using high-fidelity wind farm simulations and actual operator data. The tools to be created will help improve the economic competitiveness of wind power as a core component of the electric power system. The project will provide interdisciplinary research training to graduate students, focusing on the interplay between wind farm flow physics and control theory, and including international research opportunities. The project includes outreach to Baltimore high schools and a STEM summer program for high school students at the Johns Hopkins University. This project will create models, control algorithms and simulation tools for multiscale systems in which mechanical devices must perform coordinated actions within an infinite (or high) dimensional process, with specific application to wind farms. The research goals of the project are as follows: (i) computationally tractable methods to capture the complex interactions between turbines, and to bridge the gap between overly simplified static wake models and slow, costly high-dimensional models; (ii) a model-based control framework to move beyond the traditional control goal of maximum power extraction, and facilitate more complex trajectory tracking; (iii) extension of current high-fidelity simulation tools to be suitable for wind farm model validation and control algorithm testing and refinement; (iv) combined wind farm modeling and control tool development based on a grid simulation system that generates frequency control trajectories and acts as a supervisory control entity to distribute the control objectives over multiple wind farms. The project will provide a large eddy simulation (LES) based model and control validation platform that can facilitate modular changes in wind turbine and wake models along with the control algorithms, so that new models and flow control strategies can be efficiently tested. The new platform will support the coordination of multiple wind farms participating in frequency regulation services, using an interconnected simulated power grid as a supervisory system.
这项工作将解决风电场建模和控制中出现的挑战,使电网运营商能够准确预测不同运行条件下的容量,并跟踪所需的功率输出曲线。与简单地最大化输出功率的控制器相比,这种增强的操作灵活性将使风电场能够为公用事业提供有价值的服务,如频率调节和功率提升。该项目的关键技术创新是一个降阶模型,该模型准确地捕捉涡轮机之间的动态相互作用和涡轮机尾流的影响,同时保持足够的易处理性以进行实时计算。模型和控制将使用高保真风电场模拟和实际运营商数据进行测试。这些工具将有助于提高风力发电作为电力系统核心组成部分的经济竞争力。该项目将为研究生提供跨学科的研究培训,重点是风电场流物理和控制理论之间的相互作用,并包括国际研究机会。该项目包括外展到巴尔的摩高中和约翰霍普金斯大学的高中生STEM暑期项目。 该项目将为多尺度系统创建模型,控制算法和仿真工具,其中机械设备必须在无限(或高)维过程中执行协调动作,并具体应用于风电场。该项目的研究目标如下:(i)计算上易于处理的方法,以捕捉涡轮机之间的复杂相互作用,并弥合过于简化的静态尾流模型与缓慢、昂贵的高维模型之间的差距;(ii)基于模型的控制框架,以超越最大功率提取的传统控制目标,并促进更复杂的轨迹跟踪; ㈢扩大目前的高保真模拟工具,使之适用于风力发电场模型验证和控制算法测试及改进;(iv)基于电网仿真系统的组合风电场建模和控制工具开发,该电网仿真系统生成频率控制轨迹并充当监督控制实体以将控制目标分布在多个风电场上。该项目将提供一个基于大涡模拟(LES)的模型和控制验证平台,该平台可以促进风力涡轮机和尾流模型沿着控制算法的模块化变化,从而可以有效地测试新模型和流量控制策略。新平台将支持参与频率调节服务的多个风电场的协调,使用互连的模拟电网作为监控系统。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Turbulence and Control of Wind Farms
风电场的湍流与控制
- DOI:10.1146/annurev-control-070221-114032
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Shapiro, Carl R.;Starke, Genevieve M.;Gayme, Dennice F.
- 通讯作者:Gayme, Dennice F.
Modelling yawed wind turbine wakes: a lifting line approach
- DOI:10.1017/jfm.2018.75
- 发表时间:2018-02
- 期刊:
- 影响因子:3.7
- 作者:C. Shapiro;D. Gayme;C. Meneveau
- 通讯作者:C. Shapiro;D. Gayme;C. Meneveau
Wind farms providing secondary frequency regulation: evaluating the performance of model-based receding horizon control
提供二次调频的风电场:评估基于模型的后退控制的性能
- DOI:10.5194/wes-3-11-2018
- 发表时间:2018
- 期刊:
- 影响因子:4
- 作者:Shapiro, Carl R.;Meyers, Johan;Meneveau, Charles;Gayme, Dennice F.
- 通讯作者:Gayme, Dennice F.
Dynamic wake modeling and state estimation for improved model-based receding horizon control of wind farms
动态尾流建模和状态估计,用于改进基于模型的风电场后退控制
- DOI:10.23919/acc.2017.7963036
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Shapiro, Carl R.;Meyers, Johan;Meneveau, Charles;Gayme, Dennice F.
- 通讯作者:Gayme, Dennice F.
Network based estimation of wind farm power and velocity data under changing wind direction
风向变化下风电场功率和风速数据的网络估计
- DOI:10.23919/acc50511.2021.9483060
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Starke, Genevieve M.;Stanfel, Paul;Meneveau, Charles;Gayme, Dennice F.;King, Jennifer
- 通讯作者:King, Jennifer
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dennice Gayme其他文献
Dennice Gayme的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dennice Gayme', 18)}}的其他基金
Travel Support for the 2022 American Control Conference; Atlanta, Georgia; June 8-10, 2022
2022 年美国控制会议的差旅支持;
- 批准号:
2218987 - 财政年份:2022
- 资助金额:
$ 32.43万 - 项目类别:
Standard Grant
Collaborative Research: Empowering Next Generation Offshore Wind Farms Through Systematic Characterization of Floating Wind Turbine Array Dynamics
合作研究:通过浮式风力涡轮机阵列动力学的系统表征来增强下一代海上风电场的能力
- 批准号:
2034111 - 财政年份:2021
- 资助金额:
$ 32.43万 - 项目类别:
Standard Grant
MRI: Acquisition of an Advanced Computing Instrument to Integrate Data-Driven Research and Data intensive computing at Johns Hopkins University
MRI:约翰·霍普金斯大学购买先进计算仪器以集成数据驱动研究和数据密集型计算
- 批准号:
1920103 - 财政年份:2019
- 资助金额:
$ 32.43万 - 项目类别:
Standard Grant
CAREER: The restricted nonlinear framework: A new paradigm for modeling, analysis and control of wall-bounded turbulent flows
职业:受限非线性框架:壁面湍流建模、分析和控制的新范式
- 批准号:
1652244 - 财政年份:2017
- 资助金额:
$ 32.43万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Beyond Stability: Performance, Efficiency and Disturbance Management for Smart Infrastructure Systems
CPS:协同:协作研究:超越稳定性:智能基础设施系统的性能、效率和干扰管理
- 批准号:
1544771 - 财政年份:2015
- 资助金额:
$ 32.43万 - 项目类别:
Standard Grant
SEP Collaborative: Integrating Heterogeneous Energy Resources for Sustainable Power Networks - A Systems Approach
SEP 协作:集成异质能源资源以实现可持续电力网络 - 系统方法
- 批准号:
1230788 - 财政年份:2012
- 资助金额:
$ 32.43万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
NSF Student Travel Grant for the 2023 International Workshop on Computational Network Biology: Modeling, Analysis, and Control (CNB-MAC)
NSF 学生旅费资助 2023 年计算网络生物学国际研讨会:建模、分析和控制 (CNB-MAC)
- 批准号:
2330723 - 财政年份:2023
- 资助金额:
$ 32.43万 - 项目类别:
Standard Grant
CIF: Small: Modeling, Analysis, and Control of Contagion Processes in Networks
CIF:小型:网络中传染过程的建模、分析和控制
- 批准号:
2225513 - 财政年份:2022
- 资助金额:
$ 32.43万 - 项目类别:
Standard Grant
NSF Student Travel Grant for the 2022 International Workshop on Computational Network Biology: Modeling, Analysis, and Control (CNB-MAC)
NSF 学生旅费资助 2022 年计算网络生物学国际研讨会:建模、分析和控制 (CNB-MAC)
- 批准号:
2230929 - 财政年份:2022
- 资助金额:
$ 32.43万 - 项目类别:
Standard Grant
Energy-based modeling, analysis and control of large-scale dynamical chemical process systems
大规模动态化学过程系统的基于能量的建模、分析和控制
- 批准号:
534902-2019 - 财政年份:2020
- 资助金额:
$ 32.43万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Collaborative Research: A comprehensive approach to modeling, learning, analysis and control of epidemic processes over time-varying and multi-layer networks
协作研究:时变多层网络上的流行病过程建模、学习、分析和控制的综合方法
- 批准号:
2032258 - 财政年份:2020
- 资助金额:
$ 32.43万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Modeling, Analysis and Control of COVID-19 Spread in an Aircraft Cabin using Physics Informed Deep Learning
RAPID:协作研究:使用物理信息深度学习对机舱内的 COVID-19 传播进行建模、分析和控制
- 批准号:
2031029 - 财政年份:2020
- 资助金额:
$ 32.43万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Modeling, Analysis and Control of COVID-19 Spread in an Aircraft Cabin using Physics Informed Deep Learning
RAPID:协作研究:使用物理信息深度学习对机舱内的 COVID-19 传播进行建模、分析和控制
- 批准号:
2031027 - 财政年份:2020
- 资助金额:
$ 32.43万 - 项目类别:
Standard Grant
Collaborative Research: A comprehensive approach to modeling, learning, analysis and control of epidemic processes over time-varying and multi-layer networks
协作研究:时变多层网络上的流行病过程建模、学习、分析和控制的综合方法
- 批准号:
2032321 - 财政年份:2020
- 资助金额:
$ 32.43万 - 项目类别:
Standard Grant
Computational modeling and analysis of the dynamics of control mechanisms in molecular interaction networks of neurons
神经元分子相互作用网络控制机制动力学的计算建模和分析
- 批准号:
418603-2012 - 财政年份:2019
- 资助金额:
$ 32.43万 - 项目类别:
Discovery Grants Program - Individual
NSF Student Travel Grant for 2019 International Workshop on Computational Network Biology: Modeling, Analysis, and Control (CNB-MAC)
NSF 学生旅费资助 2019 年计算网络生物学国际研讨会:建模、分析和控制 (CNB-MAC)
- 批准号:
1937825 - 财政年份:2019
- 资助金额:
$ 32.43万 - 项目类别:
Standard Grant