MRI: Acquisition of an Advanced Computing Instrument to Integrate Data-Driven Research and Data intensive computing at Johns Hopkins University
MRI:约翰·霍普金斯大学购买先进计算仪器以集成数据驱动研究和数据密集型计算
基本信息
- 批准号:1920103
- 负责人:
- 金额:$ 279.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project funds the purchase of a high-performance computing and storage system to create a Data Intensive Scientific Computing (DISCO) environment that will be located at Johns Hopkins University (JHU). DISCO will support research in a range of science and engineering areas including wind energy, ocean circulation, materials by design, additive manufacturing, big data, genomics, and biological function on membrane to organ scales. It provides a framework for creating new data from simulations, analyzing data, and making data available for analysis by remote users. DISCO will also enable the development and sharing of new code and data analysis methods across institutions. This project addresses two of NSF's big ideas: Growing Convergence Research and Harnessing the Data Revolution, as well as the Materials Genome initiative. DISCO will immediately support over 40 faculty research projects involving over 200 scientists. DISCO will be managed in collaboration with Morgan State University, a historically black university, which will be allocated at least 5% of resources to support its educational and computational research programs. Other users nationally will be offered 20% of the resources to be managed through a partnership with XSEDE. Opportunities for training on a diverse set of scientific computing topics will be directly integrated into regular courses across JHU and Morgan State. Courses on computational chemistry, genomics, molecular dynamics, machine learning and protein chemistry are planned. Course materials will be made available through the web and the existing set of Massive Open Online Courses (MOOCs) at JHU will be expanded. These materials will ensure training in the proper use of resources, share best practices between different disciplines and promote interdisciplinary collaboration.The objective of this Major Research Instrumentation (MRI) project is to create a Data Intensive Scientific Computing (DISCO) environment that integrates high performance computing with tools for generating, analyzing and disseminating data sets of ever increasing size. The cluster will contain over 5 petabytes of storage and heterogeneous compute nodes optimized for different research projects and complex, optimized work flows: standard dual processor nodes, large memory nodes, and Graphics Processing Unit (GPU) enhanced nodes. An instance of SciServer software will enhance analysis and provide a platform for disseminating data through a web portal. This robust capability will become a powerful resource for developing and sharing code and infrastructure tools used by interdisciplinary data scientists at Johns Hopkins University, Morgan State University and beyond. DISCO will enable computational fluid dynamics studies of wind farms, ocean flow and physiological fluid dynamics. Research in multiscale modeling of materials will use machine learning to tailor material properties and integrate physical models at different scales to improve performance of additive manufacturing and connect defects and microstructures to macroscopic performance of crystals, polymers and other soft materials. DISCO will also enable sequencing of new genomes, study of variance within species and research on the microbiome. On larger scales, research on the dynamics of biological systems will examine function of proteins, membranes, cells and organs, including the impact of nanoparticles on function. This new integrated environment will reshape computational research practices and will be conducive to radical transformative research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目资助购买一个高性能计算和存储系统,以创建一个数据密集型科学计算(DISCO)环境,该环境将位于约翰霍普金斯大学(JHU)。DISCO将支持一系列科学和工程领域的研究,包括风能,海洋环流,设计材料,增材制造,大数据,基因组学以及膜到器官尺度的生物功能。它提供了一个框架,用于从模拟中创建新数据,分析数据,并使数据可供远程用户分析。DISCO还将使各机构能够开发和共享新的代码和数据分析方法。该项目解决了NSF的两个大想法:不断增长的融合研究和利用数据革命,以及材料基因组计划。DISCO将立即支持40多个教师研究项目,涉及200多名科学家。DISCO将与摩根州立大学合作管理,摩根州立大学是一所历史悠久的黑人大学,将分配至少5%的资源用于支持其教育和计算研究项目。全国其他用户将获得20%的资源,通过与XSEDE的伙伴关系进行管理。各种科学计算主题的培训机会将直接融入JHU和摩根州立大学的常规课程。计划开设计算化学、基因组学、分子动力学、机器学习和蛋白质化学等课程。课程材料将通过网络提供,JHU现有的大规模开放式在线课程(MOOC)将得到扩展。这些材料将确保培训正确使用资源,分享不同学科之间的最佳做法,并促进跨学科的合作。这个主要研究仪器(MRI)项目的目标是创建一个数据密集型科学计算(DISCO)环境,将高性能计算与生成,分析和传播不断增加的数据集的工具相结合。该集群将包含超过5 PB的存储和异构计算节点,这些节点针对不同的研究项目和复杂的优化工作流程进行了优化:标准双处理器节点、大型内存节点和图形处理单元(GPU)增强节点。SciServer软件的实例将加强分析,并提供一个通过门户网站传播数据的平台。这种强大的能力将成为开发和共享代码和基础设施工具的强大资源,这些工具由约翰霍普金斯大学、摩根州立大学及其他大学的跨学科数据科学家使用。DISCO将使风力发电场,海洋流动和生理流体动力学的计算流体动力学研究。材料多尺度建模的研究将使用机器学习来定制材料特性,并在不同尺度上集成物理模型,以提高增材制造的性能,并将缺陷和微观结构与晶体,聚合物和其他软材料的宏观性能联系起来。DISCO还将使新基因组测序,物种内差异研究和微生物组研究成为可能。在更大的范围内,对生物系统动力学的研究将检查蛋白质,膜,细胞和器官的功能,包括纳米颗粒对功能的影响。这个新的综合环境将重塑计算研究实践,并将有利于根本性的变革研究。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The area localized coupled model for analytical mean flow prediction in arbitrary wind farm geometries
- DOI:10.1063/5.0042573
- 发表时间:2020-09
- 期刊:
- 影响因子:2.5
- 作者:Genevieve M. Starke;C. Meneveau;J. King;D. Gayme
- 通讯作者:Genevieve M. Starke;C. Meneveau;J. King;D. Gayme
Pan-genomic matching statistics for targeted nanopore sequencing.
- DOI:10.1016/j.isci.2021.102696
- 发表时间:2021-06-25
- 期刊:
- 影响因子:5.8
- 作者:Ahmed O;Rossi M;Kovaka S;Schatz MC;Gagie T;Boucher C;Langmead B
- 通讯作者:Langmead B
Recovering rearranged cancer chromosomes from karyotype graphs
- DOI:10.1186/s12859-019-3208-4
- 发表时间:2019-12-17
- 期刊:
- 影响因子:3
- 作者:Aganezov, Sergey;Zban, Ilya;Schatz, Michael C.
- 通讯作者:Schatz, Michael C.
Sapling: accelerating suffix array queries with learned data models
- DOI:10.1093/bioinformatics/btaa911
- 发表时间:2021-03-15
- 期刊:
- 影响因子:5.8
- 作者:Kirsche, Melanie;Das, Arun;Schatz, Michael C.
- 通讯作者:Schatz, Michael C.
Major Impacts of Widespread Structural Variation on Gene Expression and Crop Improvement in Tomato
- DOI:10.1016/j.cell.2020.05.021
- 发表时间:2020-07-09
- 期刊:
- 影响因子:64.5
- 作者:Alonge, Michael;Wang, Xingang;Lippman, Zachary B.
- 通讯作者:Lippman, Zachary B.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dennice Gayme其他文献
Dennice Gayme的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dennice Gayme', 18)}}的其他基金
Travel Support for the 2022 American Control Conference; Atlanta, Georgia; June 8-10, 2022
2022 年美国控制会议的差旅支持;
- 批准号:
2218987 - 财政年份:2022
- 资助金额:
$ 279.5万 - 项目类别:
Standard Grant
Collaborative Research: Empowering Next Generation Offshore Wind Farms Through Systematic Characterization of Floating Wind Turbine Array Dynamics
合作研究:通过浮式风力涡轮机阵列动力学的系统表征来增强下一代海上风电场的能力
- 批准号:
2034111 - 财政年份:2021
- 资助金额:
$ 279.5万 - 项目类别:
Standard Grant
CAREER: The restricted nonlinear framework: A new paradigm for modeling, analysis and control of wall-bounded turbulent flows
职业:受限非线性框架:壁面湍流建模、分析和控制的新范式
- 批准号:
1652244 - 财政年份:2017
- 资助金额:
$ 279.5万 - 项目类别:
Standard Grant
Modeling, Analysis and Control Design for Spatially Distributed Systems with Application to Wind Farms
风电场空间分布式系统建模、分析和控制设计
- 批准号:
1635430 - 财政年份:2016
- 资助金额:
$ 279.5万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Beyond Stability: Performance, Efficiency and Disturbance Management for Smart Infrastructure Systems
CPS:协同:协作研究:超越稳定性:智能基础设施系统的性能、效率和干扰管理
- 批准号:
1544771 - 财政年份:2015
- 资助金额:
$ 279.5万 - 项目类别:
Standard Grant
SEP Collaborative: Integrating Heterogeneous Energy Resources for Sustainable Power Networks - A Systems Approach
SEP 协作:集成异质能源资源以实现可持续电力网络 - 系统方法
- 批准号:
1230788 - 财政年份:2012
- 资助金额:
$ 279.5万 - 项目类别:
Continuing Grant
相似海外基金
MRI: Track 1 Acquisition of a Desktop SEM-EDS for Advanced Material and Biological Characterization
MRI:轨道 1 获取用于先进材料和生物表征的台式 SEM-EDS
- 批准号:
2320428 - 财政年份:2023
- 资助金额:
$ 279.5万 - 项目类别:
Standard Grant
MRI: Track 1 Acquisition of an Advanced Low-altitude Earth Observing System (ALEOS) with Hyperspectral and LiDAR Capabilities to Advance Interdisciplinary Research and Training
MRI:第一轨道采购具有高光谱和 LiDAR 功能的先进低空地球观测系统 (ALEOS),以推进跨学科研究和培训
- 批准号:
2320164 - 财政年份:2023
- 资助金额:
$ 279.5万 - 项目类别:
Standard Grant
MRI: Track 1 Acquisition of Dynamic Mixed Gas Sorption Analyzer-Mass Spectrometer to Enable Advanced Separation, Sensing, and Catalysis Research
MRI:轨道 1 采购动态混合气体吸附分析仪-质谱仪以实现先进的分离、传感和催化研究
- 批准号:
2320315 - 财政年份:2023
- 资助金额:
$ 279.5万 - 项目类别:
Standard Grant
MRI: Acquisition of an advanced X-ray detector for static and dynamic synchrotron X-ray scattering studies of materials at extreme conditions at the Advanced Photon Source
MRI:购买先进的 X 射线探测器,用于在先进光子源的极端条件下对材料进行静态和动态同步加速器 X 射线散射研究
- 批准号:
2320309 - 财政年份:2023
- 资助金额:
$ 279.5万 - 项目类别:
Standard Grant
Equipment: MRI: Track 1 Acquisition of a GPU-Accelerated Computing Cluster for Advanced Optimization and Design in Multidisciplinary Research and Education
设备:MRI:Track 1 获取 GPU 加速计算集群,用于多学科研究和教育中的高级优化和设计
- 批准号:
2320649 - 财政年份:2023
- 资助金额:
$ 279.5万 - 项目类别:
Standard Grant
MRI: Track 1 Acquisition of a Multifunctional Thermal Analysis Instrument for Interdisciplinary Research and Research Training in Advanced Nanomaterial Development
MRI:轨道 1 采购多功能热分析仪器,用于先进纳米材料开发的跨学科研究和研究培训
- 批准号:
2320284 - 财政年份:2023
- 资助金额:
$ 279.5万 - 项目类别:
Standard Grant
MRI: Acquisition of Low Velocity Impact Tester for Advanced Materials Research and Education
MRI:采购低速冲击测试仪用于先进材料研究和教育
- 批准号:
2215960 - 财政年份:2022
- 资助金额:
$ 279.5万 - 项目类别:
Standard Grant
MRI: Acquisition of a High Brilliance Dual-Source X-ray Diffractometer for Advanced Materials Research, Education, and Training in Western New York
MRI:采购一台高亮度双源 X 射线衍射仪,用于纽约西部的先进材料研究、教育和培训
- 批准号:
2216151 - 财政年份:2022
- 资助金额:
$ 279.5万 - 项目类别:
Standard Grant
MRI: Acquisition of a versatile pico-second laser and electroplating system for advanced device manufacturing and materials processing
MRI:采购多功能皮秒激光和电镀系统,用于先进设备制造和材料加工
- 批准号:
2216312 - 财政年份:2022
- 资助金额:
$ 279.5万 - 项目类别:
Standard Grant
MRI: Acquisition of High Power and Resolution X-ray Microscopy System for Advanced Characterization, Non-Destructive Evaluation, and Cross-Disciplinary Research & Innovation
MRI:采购高功率和分辨率 X 射线显微镜系统,用于高级表征、无损评估和跨学科研究
- 批准号:
2216175 - 财政年份:2022
- 资助金额:
$ 279.5万 - 项目类别:
Standard Grant