Collaborative Research: Bayesian Methods for the Data-Driven Recovery of Networks: Measuring Impact and Building Resilience in Infrastructures and Communities
合作研究:用于数据驱动的网络恢复的贝叶斯方法:衡量基础设施和社区的影响并建立弹性
基本信息
- 批准号:1635717
- 负责人:
- 金额:$ 24.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The US government has increasingly emphasized resilience planning for critical infrastructure, where the combination of withstanding and recovering from disruptions that exacerbate our aging and vulnerable infrastructure systems, constitutes resilience. According to the Department of Homeland Security, the resilient operation of critical infrastructures is "essential to the Nation's security, public health and safety, economic vitality, and way of life." Of particular interest recently is an emphasis on the resilience of communities after a disruptive event, acknowledging that infrastructures do not exist for their own sake but serve society (e.g., citizens, industries), and in some cases, resilient communities assist in protecting the built environment. A resilient community would ideally be able to use the physical infrastructure to effectively communicate risk and coordinate recovery strategies to respond to and recover from disruptions, and ultimately adapt to change and learn from past disruptions. The objective of this work is to develop a new data-driven optimization framework to improve (i) the ability to model the performance of infrastructure networks, and (ii) the ability to plan for the recovery of these networks after a disruption, with an emphasis on community resilience and economic productivity. The research approach is composed of three components. The first component develops a new statistical technique, the hierarchical Bayesian kernel method, which integrates the Bayesian property of improving predictive accuracy as data are dynamically obtained, the kernel function that adds specificity to the model and can make nonlinear data more manageable, and the hierarchical property of borrowing information from different sources in sparse and diverse data situations which are common in disruptive events scenarios. The second component develops an infrastructure network recovery optimization formulation that minimizes the larger impact of infrastructure network performance with data-driven (and dynamically updated) hierarchical Bayesian kernel parameters of infrastructure recovery, along with solution techniques that account for the size and dynamic nature of model parameters. The application of the first two integrated components to electric power networks (where impact is measured on the safety and resilience of the community) and inland waterways (where impact is measured on economic productivity across multiple industries), constitutes the third component, offering two application perspectives on the impact of infrastructure network resilience and recovery.
美国政府越来越强调关键基础设施的弹性规划,在这些规划中,抵御和从加剧我们老化和脆弱的基础设施系统的中断中恢复的组合构成了弹性。根据国土安全部的说法,关键基础设施的弹性运行对国家安全、公共卫生和安全、经济活力和生活方式至关重要。最近特别令人感兴趣的是强调社区在发生破坏性事件后的复原力,承认基础设施不是为其本身而存在,而是为社会(例如,公民、行业)服务,在某些情况下,复原性社区有助于保护建成的环境。一个有弹性的社区理想情况下应该能够利用有形基础设施有效地传达风险,协调恢复战略,以应对中断并从中断中恢复,并最终适应变化并从过去的中断中吸取教训。这项工作的目标是开发一个新的数据驱动的优化框架,以提高(I)模拟基础设施网络性能的能力,以及(Ii)规划这些网络在中断后恢复的能力,重点是社区的复原力和经济生产力。研究方法由三部分组成。第一个组件开发了一种新的统计技术-分层贝叶斯核方法,它集成了随着数据的动态获取而提高预测精度的贝叶斯性质,增加了模型的特殊性并可以使非线性数据更易于管理的核函数,以及在稀疏和多样化的数据情况下从不同来源借用信息的分层性质,这在破坏性事件场景中是常见的。第二组件开发基础设施网络恢复优化公式,其利用基础设施恢复的数据驱动(并且动态更新)的分层贝叶斯核参数以及考虑模型参数的大小和动态性质的解决方案技术来最小化基础设施网络性能的较大影响。前两个综合组成部分适用于电力网络(衡量对社区的安全和复原能力的影响)和内河航道(衡量对多个行业的经济生产力的影响),这是第三个组成部分,就基础设施网络复原力和恢复的影响提供了两个应用视角。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantifying Community Resilience Using Hierarchical Bayesian Kernel Methods: A Case Study on Recovery from Power Outages
使用分层贝叶斯核方法量化社区复原力:断电恢复案例研究
- DOI:10.1111/risa.13343
- 发表时间:2019
- 期刊:
- 影响因子:3.8
- 作者:Yu, Jin‐Zhu;Baroud, Hiba
- 通讯作者:Baroud, Hiba
Integrating Operational and Organizational Aspects in Interdependent Infrastructure Network Recovery
- DOI:10.1111/risa.13340
- 发表时间:2019-09-01
- 期刊:
- 影响因子:3.8
- 作者:Gomez, Camilo;Gonzalez, Andres D.;Bedoya-Motta, Claudia D.
- 通讯作者:Bedoya-Motta, Claudia D.
Modeling the Resilience of Interdependent Infrastructure Systems under Uncertainty
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Jin-Zhu Yu
- 通讯作者:Jin-Zhu Yu
Multicriteria risk analysis of commodity-specific dock investments at an inland waterway port
内河港口特定商品码头投资的多标准风险分析
- DOI:10.1080/0013791x.2019.1580808
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Whitman, Mackenzie;Baroud, Hiba;Barker, Kash
- 通讯作者:Barker, Kash
Measuring Infrastructure and Community Recovery Rate Using Bayesian Methods: A Case Study of Power Systems Resilience
使用贝叶斯方法测量基础设施和社区恢复率:电力系统弹性案例研究
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Baroud, H.;Murlidar, S.
- 通讯作者:Murlidar, S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hiba Baroud其他文献
The convergence of AI, IoT, and big data for advancing flood analytics research
人工智能、物联网和大数据的融合促进洪水分析研究
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:2.9
- 作者:
Samrat Chatterjee;Hiba Baroud;S. Samadi - 通讯作者:
S. Samadi
Variance-based sensitivity analysis of climate variability impact on crop yield using machine learning: A case study in Jordan
基于方差的气候变化对作物产量影响的敏感性分析(使用机器学习方法):约旦的案例研究
- DOI:
10.1016/j.agwat.2025.109409 - 发表时间:
2025-05-31 - 期刊:
- 影响因子:6.500
- 作者:
Yingqiang Xu;Abeer Albalawneh;Maysoon Al-Zoubi;Hiba Baroud - 通讯作者:
Hiba Baroud
Cyber-Physical technologies in freight operations and sustainability: A case study of smart GPS technology in trucking
- DOI:
10.1016/j.scs.2020.102017 - 发表时间:
2020-04-01 - 期刊:
- 影响因子:
- 作者:
Amirhassan Kermanshah;Hiba Baroud;Mark Abkowitz - 通讯作者:
Mark Abkowitz
Hiba Baroud的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hiba Baroud', 18)}}的其他基金
CAREER: Policy-Infrastructure-Community Interdependencies: The Next Frontiers in Dynamic Networks
职业:政策-基础设施-社区相互依赖关系:动态网络的下一个前沿
- 批准号:
1944559 - 财政年份:2020
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
NNA Track 1: Collaborative Research: Maritime transportation in a changing Arctic: Navigating climate and sea ice uncertainties
NNA 第 1 轨道:合作研究:不断变化的北极的海上运输:应对气候和海冰的不确定性
- 批准号:
1928112 - 财政年份:2020
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
I-Corps: Assessing the Challenges of Energy Systems and Evaluating the Suitability of Mobile Energy Storage Transmission
I-Corps:评估能源系统的挑战并评估移动储能传输的适用性
- 批准号:
1829321 - 财政年份:2018
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341237 - 财政年份:2024
- 资助金额:
$ 24.89万 - 项目类别:
Continuing Grant
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
- 批准号:
2348163 - 财政年份:2023
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
- 批准号:
2333326 - 财政年份:2023
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
- 批准号:
2333324 - 财政年份:2023
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
- 批准号:
2333325 - 财政年份:2023
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210282 - 财政年份:2022
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
- 批准号:
2215169 - 财政年份:2022
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
- 批准号:
2215168 - 财政年份:2022
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
Collaborative Research: Advancing Bayesian Thinking in STEM
合作研究:推进 STEM 中的贝叶斯思维
- 批准号:
2215920 - 财政年份:2022
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant