Transitory Stochastic Models: Analysis and Optimization
瞬态随机模型:分析与优化
基本信息
- 批准号:1636069
- 负责人:
- 金额:$ 22.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Stochastic models are widely used to analyze and optimize healthcare, communication, large-scale computing, and transportation systems. Existing theory has tended to focus on easier-to-analyze homogeneous models that assume that service requirements are identical for all users. Recent technological trends have made it possible to collect large amounts of data that show that users' requirements are often heterogeneous. Thus, a theory of nonhomogeneous stochastic models is needed. The goal of this project is develop a theory of 'transitory stochastic models' that explicitly incorporates users' inhomogeneity and, concomitantly, considers the optimization and control of these models. If successful, this project will contribute to the theoretical understanding of nonhomogeneous stochastic systems, and the application of the theoretical results can potentially result in significant performance gains in the operational management of many service systems. Furthermore, ideas from this project will be incorporated into a new stochastic modeling course for undergraduates that integrates theory, data modeling and optimization. The PI will also leverage summer research programs to facilitate research experiences for minority and female undergraduate students.The theoretical objective of this research is to develop stochastic process and analytical approximations for the performance analysis and optimization of transitory stochastic models. The models considered include systems with many servers, queueing networks, and systems with heavy-tailed service times and non-stationary, correlated traffic. The systems are transitory in the sense that we are interested in predictions over a finite, but operationally significant time horizon, and the models require a purely transient analysis, which is non-trivial even in the simpler cases. The research has twin related foci: first, this effort will identify novel scaling regimes in which "universal" stochastic process approximations to the traffic and workload processes can be established, in the form of functional central limit theorems, strong approximations and conditioned limit theorems. Second, the research will also consider the identification of optimal controls for the underlying systems using these stochastic process approximations. The focus here will be on developing analytical approximations to the expected cost functions and identifying an accompanying notion of asymptotic optimality of controls.
随机模型被广泛用于分析和优化医疗保健,通信,大规模计算和运输系统。现有的理论往往集中在制造商分析同构模型,假设服务需求是相同的所有用户。最近的技术趋势使收集大量数据成为可能,这些数据表明用户的要求往往是多种多样的。因此,非齐次随机模型的理论是必要的。这个项目的目标是开发一个理论的“瞬态随机模型”,明确纳入用户的不均匀性,并同时考虑这些模型的优化和控制。如果成功的话,这个项目将有助于非齐次随机系统的理论理解,和理论结果的应用可能会导致显着的性能增益在许多服务系统的运营管理。此外,从这个项目的想法将被纳入一个新的随机建模课程的本科生,集成理论,数据建模和优化。PI还将利用暑期研究计划,以促进少数民族和女本科生的研究经验。本研究的理论目标是开发随机过程和分析近似的性能分析和优化的瞬态随机模型。所考虑的模型包括系统与许多服务器,嵌入式网络,和系统的重尾服务时间和非平稳,相关的流量。系统是暂时的,在这个意义上,我们感兴趣的预测在一个有限的,但操作上重要的时间范围,和模型需要一个纯粹的瞬态分析,这是不平凡的,即使在简单的情况下。这项研究有两个相关的焦点:首先,这项工作将确定新的缩放制度,其中“通用”的随机过程近似的流量和工作量的过程可以建立,在形式的功能中心极限定理,强近似和条件极限定理。其次,研究还将考虑使用这些随机过程近似的基础系统的最优控制的识别。这里的重点将是发展分析近似的预期成本函数,并确定一个附带的概念渐近最优控制。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A many-server functional strong law for a non-stationary loss model
- DOI:10.1016/j.orl.2021.03.004
- 发表时间:2019-12
- 期刊:
- 影响因子:0
- 作者:P. Chakraborty;Harsha Honnappa
- 通讯作者:P. Chakraborty;Harsha Honnappa
Strong Embeddings for Transitory Queueing Models
瞬态排队模型的强嵌入
- DOI:10.1287/moor.2021.1158
- 发表时间:2021
- 期刊:
- 影响因子:1.7
- 作者:Chakraborty, Prakash;Honnappa, Harsha
- 通讯作者:Honnappa, Harsha
Estimating Stochastic Poisson Intensities Using Deep Latent Models
使用深度潜在模型估计随机泊松强度
- DOI:10.1109/wsc48552.2020.9383967
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Wang, Ruixin;Jaiswal, Prateek;Honnappa, Harsha
- 通讯作者:Honnappa, Harsha
Asymptotically Optimal Appointment Schedules
渐近最优预约时间表
- DOI:10.1287/moor.2018.0973
- 发表时间:2019
- 期刊:
- 影响因子:1.7
- 作者:Armony, Mor;Atar, Rami;Honnappa, Harsha
- 通讯作者:Honnappa, Harsha
Large deviations of bivariate Gaussian extrema
- DOI:10.1007/s11134-019-09632-z
- 发表时间:2019-03
- 期刊:
- 影响因子:1.2
- 作者:R. van der Hofstad;Harsha Honnappa
- 通讯作者:R. van der Hofstad;Harsha Honnappa
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harsha Honnappa其他文献
Statistical Inference for Approximate Bayesian Optimal Design
近似贝叶斯最优设计的统计推断
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Prateek Jaiswal;Harsha Honnappa - 通讯作者:
Harsha Honnappa
Information Projection on Banach Spaces with Applications to State Independent KL-Weighted Optimal Control
Banach 空间上的信息投影及其在状态独立 KL 加权最优控制中的应用
- DOI:
10.1007/s00245-021-09786-4 - 发表时间:
2020 - 期刊:
- 影响因子:1.8
- 作者:
Zachary Selk;W. Haskell;Harsha Honnappa - 通讯作者:
Harsha Honnappa
Dominating Points of Gaussian Extremes
高斯极值的控制点
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Harsha Honnappa;R. Pasupathy;Prateek Jaiswal - 通讯作者:
Prateek Jaiswal
OPTIMAL ALLOCATIONS FOR SAMPLE AVERAGE APPROXIMATION
样本平均近似值的最优分配
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Prateek Jaiswal;Harsha Honnappa;R. Pasupathy - 通讯作者:
R. Pasupathy
On Transitory Queueing
关于暂时性排队
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Harsha Honnappa;R. Jain;Amy R. Ward - 通讯作者:
Amy R. Ward
Harsha Honnappa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Harsha Honnappa', 18)}}的其他基金
CAREER: Methods for Data-Driven Service Engineering
职业:数据驱动服务工程方法
- 批准号:
2143752 - 财政年份:2022
- 资助金额:
$ 22.07万 - 项目类别:
Standard Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Marine Debris at Coastlines: predicting sources from drift, dispersion, and beaching via experiments and multiscale stochastic models
职业:海岸线的海洋碎片:通过实验和多尺度随机模型预测漂移、分散和搁浅的来源
- 批准号:
2338221 - 财政年份:2024
- 资助金额:
$ 22.07万 - 项目类别:
Continuing Grant
Limit Theorems and Structural Properties of Stochastic Models
随机模型的极限定理和结构性质
- 批准号:
2889380 - 财政年份:2023
- 资助金额:
$ 22.07万 - 项目类别:
Studentship
eMB: Collaborative Research: Discovery and calibration of stochastic chemical reaction network models
eMB:协作研究:随机化学反应网络模型的发现和校准
- 批准号:
2325184 - 财政年份:2023
- 资助金额:
$ 22.07万 - 项目类别:
Standard Grant
Macroscopic properties of discrete stochastic models and analysis of their scaling limits
离散随机模型的宏观性质及其标度极限分析
- 批准号:
23KK0050 - 财政年份:2023
- 资助金额:
$ 22.07万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Investigating evolution and complexity with stochastic models
使用随机模型研究演化和复杂性
- 批准号:
2889977 - 财政年份:2023
- 资助金额:
$ 22.07万 - 项目类别:
Studentship
Understanding the Critical Role of Seasonality for El Niño/Southern Oscillation (ENSO) Variability, Using Empirical Stochastic-Dynamic Models and Physics-Based Coupled Models
使用经验随机动态模型和基于物理的耦合模型了解季节性对厄尔尼诺/南方涛动 (ENSO) 变异性的关键作用
- 批准号:
2311162 - 财政年份:2023
- 资助金额:
$ 22.07万 - 项目类别:
Standard Grant
eMB: Collaborative Research: Discovery and calibration of stochastic chemical reaction network models
eMB:协作研究:随机化学反应网络模型的发现和校准
- 批准号:
2325185 - 财政年份:2023
- 资助金额:
$ 22.07万 - 项目类别:
Standard Grant
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
- 批准号:
RGPIN-2018-04746 - 财政年份:2022
- 资助金额:
$ 22.07万 - 项目类别:
Discovery Grants Program - Individual
EAGER: Formal Analysis of Stochastic Models in Systems Biology Under Uncertainty
EAGER:不确定性下系统生物学随机模型的形式分析
- 批准号:
2227898 - 财政年份:2022
- 资助金额:
$ 22.07万 - 项目类别:
Continuing Grant
A Stochastic Approach for Empirical Analyses of Urban/Traffic Models with Multiple Equilibria
多重均衡城市/交通模型实证分析的随机方法
- 批准号:
22K04347 - 财政年份:2022
- 资助金额:
$ 22.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)