CAREER: Methods for Data-Driven Service Engineering

职业:数据驱动服务工程方法

基本信息

  • 批准号:
    2143752
  • 负责人:
  • 金额:
    $ 50.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development Program (CAREER) project contributes to the advancement of the Nation's health, prosperity, and welfare by studying the fundamentals of data-driven engineering of service systems. Service industries such as healthcare, communications, transportation and logistics, comprised over 67 percent of US gross domestic product and employed more than 78 percent of the working population in 2020, according to the US Federal Reserve and the Bureau of Labor Statistics. Engineering service systems to increase operational efficiency and cost effectiveness is a crucial task with significant socio-economic implications for the US Designing and operating these systems has benefited from the use of sophisticated mathematical models of these systems. However, identifying a model appropriate to a system of interest is a remarkably hard problem. This award supports a fundamental understanding of how to utilize large operational data sets and emerging machine learning technologies, to facilitate such model identification. The research products of this award will enable engineers, policy makers and academicians to better improve operational and cost efficiencies, and as a consequence improve overall national welfare. The educational plan as part of this award aims to radically improve student advising and mentoring in large, public universities and colleges, by utilizing machine learning to predict student performance and enable student advisors and faculty mentors to implement early advising interventions. These interventions can substantially improve student retention and graduation rates, particularly among at-risk populations such as first-generation college students.Large service systems exhibit multi-scale spatiotemporal variations and they are naturally modeled using stochastic network models operating in random and nonstationary environments. Model identification and calibration are fundamental to data-driven engineering. This research project fills an important gap in the literature, where most of the focus is on stationary models. The research in this award proposes the development of novel semiparametric methods for model calibration in stochastic network models operating in random and nonstationary environments. The research leverages and extends state-of-art techniques from stochastic analysis, optimization over measure spaces and point process theory to develop these methods. In the case of model inference, the project investigates theory that builds on and significantly extends M-estimation, minimax and function approximation analyses to the semiparametric setting of service system models. The complex nature of stochastic network models creates a desideratum for an understanding of which classes of such models can be uniquely identified. The project addresses identifiability analyses and utilizes information geometry to understand the landscape or manifolds of the model space to address this question. Together, the theory and methods will lead to a comprehensive ‘graybox’ methodology for calibrating service system models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该教师早期职业发展计划(CAREER)项目通过研究服务系统的数据驱动工程的基本原理,为国家的健康,繁荣和福利的进步做出贡献。根据美国联邦储备委员会和劳工统计局的数据,2020年,医疗保健、通信、运输和物流等服务业占美国国内生产总值的67%以上,雇用了超过78%的劳动人口。工程服务系统,以提高运营效率和成本效益是一个重要的任务,具有显着的社会经济影响,美国设计和运营这些系统受益于使用这些系统的复杂的数学模型。然而,确定一个模型适合于感兴趣的系统是一个非常困难的问题。该奖项支持对如何利用大型操作数据集和新兴机器学习技术的基本理解,以促进此类模型识别。该奖项的研究成果将使工程师,政策制定者和学者能够更好地提高运营和成本效率,从而提高整体国民福利。作为该奖项的一部分,教育计划旨在通过利用机器学习来预测学生的表现,并使学生顾问和教师导师能够实施早期咨询干预,从而从根本上改善大型公立大学和学院的学生咨询和指导。这些干预措施可以大大提高学生的保留率和毕业率,特别是在高危人群,如第一代大学生。大型服务系统表现出多尺度时空变化,他们自然是随机网络模型在随机和非平稳环境中运行。 模型识别和校准是数据驱动工程的基础。该研究项目填补了文献中的一个重要空白,其中大部分重点是静态模型。 该奖项的研究提出了在随机和非平稳环境中运行的随机网络模型中模型校准的新半参数方法的发展。该研究利用并扩展了随机分析,测量空间优化和点过程理论的最新技术来开发这些方法。在模型推理的情况下,该项目研究的理论,建立在M-估计,极大极小和函数逼近分析的半参数设置的服务系统模型,并显着扩展。随机网络模型的复杂性创造了一个迫切需要的理解,这类模型可以唯一识别。该项目解决了可识别性分析,并利用信息几何来理解模型空间的景观或流形,以解决这个问题。 该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Harsha Honnappa其他文献

Statistical Inference for Approximate Bayesian Optimal Design
近似贝叶斯最优设计的统计推断
Information Projection on Banach Spaces with Applications to State Independent KL-Weighted Optimal Control
Banach 空间上的信息投影及其在状态独立 KL 加权最优控制中的应用
  • DOI:
    10.1007/s00245-021-09786-4
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Zachary Selk;W. Haskell;Harsha Honnappa
  • 通讯作者:
    Harsha Honnappa
Dominating Points of Gaussian Extremes
高斯极值的控制点
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harsha Honnappa;R. Pasupathy;Prateek Jaiswal
  • 通讯作者:
    Prateek Jaiswal
OPTIMAL ALLOCATIONS FOR SAMPLE AVERAGE APPROXIMATION
样本平均近似值的最优分配
On Transitory Queueing
关于暂时性排队
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harsha Honnappa;R. Jain;Amy R. Ward
  • 通讯作者:
    Amy R. Ward

Harsha Honnappa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Harsha Honnappa', 18)}}的其他基金

Transitory Stochastic Models: Analysis and Optimization
瞬态随机模型:分析与优化
  • 批准号:
    1636069
  • 财政年份:
    2016
  • 资助金额:
    $ 50.65万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
  • 批准号:
    2422478
  • 财政年份:
    2024
  • 资助金额:
    $ 50.65万
  • 项目类别:
    Continuing Grant
CAREER: Machine learning, Mapping Spaces, and Obstruction Theoretic Methods in Topological Data Analysis
职业:拓扑数据分析中的机器学习、映射空间和障碍理论方法
  • 批准号:
    2415445
  • 财政年份:
    2024
  • 资助金额:
    $ 50.65万
  • 项目类别:
    Continuing Grant
CAREER: Super-Quantile Based Methods for Analyzing Large-Scale Heterogenous Data
职业:基于超分位数的大规模异构数据分析方法
  • 批准号:
    2238428
  • 财政年份:
    2023
  • 资助金额:
    $ 50.65万
  • 项目类别:
    Continuing Grant
CAREER: Parallel evolution in the microbiome: novel methods for detecting repeated, rapid adaptations in metagenomic data
职业:微生物组的平行进化:检测宏基因组数据中重复、快速适应的新方法
  • 批准号:
    2240098
  • 财政年份:
    2023
  • 资助金额:
    $ 50.65万
  • 项目类别:
    Continuing Grant
CAREER: Ensemble Kalman Methods and Bayesian Optimization in Inverse Problems and Data Assimilation
职业:反问题和数据同化中的集成卡尔曼方法和贝叶斯优化
  • 批准号:
    2237628
  • 财政年份:
    2023
  • 资助金额:
    $ 50.65万
  • 项目类别:
    Continuing Grant
CAREER: Ordered Alignment Methods for Complex, High-Dimensional Data
职业:复杂、高维数据的有序对齐方法
  • 批准号:
    2144050
  • 财政年份:
    2022
  • 资助金额:
    $ 50.65万
  • 项目类别:
    Continuing Grant
CAREER: Developing Actionable Methods for Observational Health Data
职业:为观察健康数据开发可行的方法
  • 批准号:
    2145625
  • 财政年份:
    2022
  • 资助金额:
    $ 50.65万
  • 项目类别:
    Continuing Grant
CAREER: Fast and Accurate Statistical Learning and Inference from Large-Scale Data: Theory, Methods, and Algorithms
职业:从大规模数据中快速准确地进行统计学习和推理:理论、方法和算法
  • 批准号:
    2046874
  • 财政年份:
    2021
  • 资助金额:
    $ 50.65万
  • 项目类别:
    Continuing Grant
CAREER: Developing New Computational Methods to Address the Missing Data Problem in Population Genomics
职业:开发新的计算方法来解决群体基因组学中的缺失数据问题
  • 批准号:
    2147812
  • 财政年份:
    2021
  • 资助金额:
    $ 50.65万
  • 项目类别:
    Continuing Grant
CAREER: Computational design of sustainable hydrogenation systems via a novel combination of data science, optimization, and ab initio methods
职业:通过数据科学、优化和从头算方法的新颖组合进行可持续加氢系统的计算设计
  • 批准号:
    2045550
  • 财政年份:
    2021
  • 资助金额:
    $ 50.65万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了