CAREER: Reduced-order Methods for Big-Data Challenges in Nonlinear and Stochastic Optimization

职业:非线性和随机优化中大数据挑战的降阶方法

基本信息

  • 批准号:
    1637473
  • 负责人:
  • 金额:
    $ 34.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-02-15 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

The objective of this Faculty Early Career Development (CAREER) Program project is to develop a set of new reduced-order algorithms to tackle the big-data challenges in optimization. The last several years have seen an unprecedented growth in the amount of available data. While nonlinear, especially convex programming (CP) models are important to extract useful knowledge from raw data, high problem dimensionality, large data volumes and inherent uncertainty present significant challenges to the design of optimization algorithms. This research aims to attack these challenges by investigating: (i) novel first-order methods for deterministic CP that converge faster, require little structural information and do not rely on line search, based on level methods; (ii) stochastic first-order methods that handle data uncertainty in an optimal manner, based on stochastic approximation; (iii) novel randomization schemes for solving certain challenging deterministic CP problems beyond the capability of first-order methods; and (iv) stochastic first- and zeroth-order methods for general, not necessarily convex, stochastic programs. The research focuses on two fundamental issues across these topics: (i) the study of complexity which provides guarantees on algorithmic performance; and (ii) the exploitation of structures that leads to the design of algorithms with stronger complexity and superior practical performance.If successful, a set of new algorithmic schemes will advance the state-of-the-art in nonlinear and stochastic optimization, bringing many practically relevant data analysis problems within the range of tractability. Example applications include algorithms for faster and more accurate medical image reconstruction and classification, which will be beneficial to healthcare. In addition, in seismology, effective stochastic programming methods will help to build predictive models by measuring thousands of earthquakes detected at seismic stations. The project will also support the PI's educational goals to improve students' learning in operations research, broaden the representation of underrepresented groups in the PhD program, and contribute to open research infrastructure through the development of optimization solvers.
这个教师早期职业发展(CAREER)计划项目的目标是开发一套新的降阶算法,以解决优化中的大数据挑战。在过去几年中,可用数据的数量出现了前所未有的增长。虽然非线性,特别是凸规划(CP)模型是重要的,从原始数据中提取有用的知识,高维问题,大数据量和固有的不确定性提出了重大挑战的优化算法的设计。本研究的目的是通过调查这些挑战:(i)新的一阶方法的确定性CP收敛速度更快,需要很少的结构信息,不依赖于线搜索,基于水平的方法;(ii)随机一阶方法,以最佳的方式处理数据的不确定性,基于随机近似;(iii)新的随机化方案,用于解决超出一阶方法能力的某些具有挑战性的确定性CP问题;和(iv)随机一阶和零阶方法一般,不一定凸,随机程序。研究集中在这些主题的两个基本问题:(i)复杂性的研究,提供了保证算法性能;(ii)结构的开发,导致设计具有更强复杂性和上级实际性能的算法。如果成功,一组新的算法方案将推进非线性和随机优化的最新技术,在易处理的范围内带来许多实际相关的数据分析问题。示例应用包括用于更快和更准确的医学图像重建和分类的算法,这将有利于医疗保健。 此外,在地震学中,有效的随机规划方法将有助于通过测量地震台站检测到的数千次地震来建立预测模型。该项目还将支持PI的教育目标,以改善学生在运筹学方面的学习,扩大博士课程中代表性不足的群体的代表性,并通过开发优化求解器为开放式研究基础设施做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guanghui Lan其他文献

A simple uniformly optimal method without line search for convex optimization
一种简单的无线搜索凸优化一致最优方法
  • DOI:
    10.48550/arxiv.2310.10082
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tianjiao Li;Guanghui Lan
  • 通讯作者:
    Guanghui Lan
Stochastic Approximation Methods and Their Finite-Time Convergence Properties
随机逼近方法及其有限时间收敛性质
  • DOI:
    10.1007/978-1-4939-1384-8_7
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Saeed Ghadimi;Guanghui Lan
  • 通讯作者:
    Guanghui Lan
Policy Optimization over General State and Action Spaces
  • DOI:
    10.48550/arxiv.2211.16715
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guanghui Lan
  • 通讯作者:
    Guanghui Lan
Convex optimization under inexact first-order information
  • DOI:
  • 发表时间:
    2009-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guanghui Lan
  • 通讯作者:
    Guanghui Lan
Convex Optimization Theory
凸优化理论

Guanghui Lan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guanghui Lan', 18)}}的其他基金

Collaborative Research: Algorithms for Optimal Adaptive Enrichment Design in Randomized Trial
协作研究:随机试验中最佳自适应富集设计的算法
  • 批准号:
    1953199
  • 财政年份:
    2020
  • 资助金额:
    $ 34.28万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Acceleration Algorithms for Large-scale Nonconvex Optimization
CIF:小型:协作研究:大规模非凸优化的加速算法
  • 批准号:
    1909298
  • 财政年份:
    2019
  • 资助金额:
    $ 34.28万
  • 项目类别:
    Standard Grant
Gradient Sliding Schemes for Large-scale Optimization and Data Analysis
用于大规模优化和数据分析的梯度滑动方案
  • 批准号:
    1637474
  • 财政年份:
    2016
  • 资助金额:
    $ 34.28万
  • 项目类别:
    Standard Grant
Gradient Sliding Schemes for Large-scale Optimization and Data Analysis
用于大规模优化和数据分析的梯度滑动方案
  • 批准号:
    1537414
  • 财政年份:
    2015
  • 资助金额:
    $ 34.28万
  • 项目类别:
    Standard Grant
CAREER: Reduced-order Methods for Big-Data Challenges in Nonlinear and Stochastic Optimization
职业:非线性和随机优化中大数据挑战的降阶方法
  • 批准号:
    1254446
  • 财政年份:
    2013
  • 资助金额:
    $ 34.28万
  • 项目类别:
    Standard Grant
Theory and Applications of Stochastic First-order Methods for Large-scale Stochastic Convex Optimization
大规模随机凸优化的随机一阶方法的理论与应用
  • 批准号:
    1000347
  • 财政年份:
    2010
  • 资助金额:
    $ 34.28万
  • 项目类别:
    Standard Grant

相似国自然基金

2C型蛋白磷酸酶REDUCED DORMANCY 5通过激酶-磷酸酶蛋白复合体调控种子休眠的分子机制
  • 批准号:
    32000250
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
  • 批准号:
    2341000
  • 财政年份:
    2024
  • 资助金额:
    $ 34.28万
  • 项目类别:
    Standard Grant
CAREER: Physics-Infused Reduced-Order Modeling for Control Co-Design of Morphing Aerial Autonomous Systems
职业:用于变形空中自主系统控制协同设计的物理降阶建模
  • 批准号:
    2340266
  • 财政年份:
    2024
  • 资助金额:
    $ 34.28万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
  • 批准号:
    2345048
  • 财政年份:
    2023
  • 资助金额:
    $ 34.28万
  • 项目类别:
    Standard Grant
Development of cluster-based reduced-order model for optimal feedback control of dynamic stall flow
开发基于集群的动态失速流最优反馈控制降阶模型
  • 批准号:
    22KJ0183
  • 财政年份:
    2023
  • 资助金额:
    $ 34.28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Tensorial Reduced Order Models: Development, Analysis, and Applications
张量降阶模型:开发、分析和应用
  • 批准号:
    2309197
  • 财政年份:
    2023
  • 资助金额:
    $ 34.28万
  • 项目类别:
    Standard Grant
Numerical Simulation of Hypersonic Turbulent Flow by Spatiotemporal Multi-Scale Reduced Order Model
时空多尺度降阶模型高超声速湍流数值模拟
  • 批准号:
    23KJ0127
  • 财政年份:
    2023
  • 资助金额:
    $ 34.28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Granular Bioink Made-To-Order from Macroporous Collagen Particles Offers Excellent Printability, Shape Fidelity, and Reduced Tissue Contraction
由大孔胶原颗粒定制的颗粒生物墨水具有出色的印刷适性、形状保真度和减少的组织收缩
  • 批准号:
    576571-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 34.28万
  • 项目类别:
    Idea to Innovation
Collaborative Research: Understanding Urban Resilience to Pluvial Floods Using Reduced-Order Modeling
合作研究:使用降阶模型了解城市对洪涝灾害的抵御能力
  • 批准号:
    2053358
  • 财政年份:
    2022
  • 资助金额:
    $ 34.28万
  • 项目类别:
    Standard Grant
CAREER: Goal-Oriented Variable Transformations for Efficient Reduced-Order and Data-Driven Modeling
职业:面向目标的变量转换,用于高效的降阶和数据驱动建模
  • 批准号:
    2144023
  • 财政年份:
    2022
  • 资助金额:
    $ 34.28万
  • 项目类别:
    Continuing Grant
Deep learning for reduced order modelling of wall bounded, turbulent flows
用于壁面湍流降阶建模的深度学习
  • 批准号:
    2753788
  • 财政年份:
    2022
  • 资助金额:
    $ 34.28万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了