AitF:Collaborative Research: Bridging the Gap between Theory and Practice for Matching and Edge Cover Problems

AitF:协作研究:弥合匹配和边缘覆盖问题理论与实践之间的差距

基本信息

项目摘要

Every year the 19,000 students who graduate from medical schools in the U.S. are matched with the hospitals where they will do their residency training. Both students and hospitals rank their choices, and an algorithm is used to find a matching that gives each student their best available choice. These problems also arise in other contexts: matching organ donors to recipients whose bodies will not reject the transplanted organ, matching advertisements to web surfers based on their interests, etc. Variations of matching problems, and related edge cover problems, are formalized in computer science on combinatorial objects called graphs, and involve beautiful mathematics, sophisticated algorithms, efficient implementations of these algorithms on modern desk-top computers and supercomputers, and empirical evaluation on a number of problems that arise in application areas such as computational science and engineering, data science, network science, etc. In this project, the two PIs will develop new algorithms and software for matching and edge cover problems, and make implementations available for practitioners in various fields of science, engineering and industry. The PIs will also train two PhD students in this project, and develop teaching resources to make these developments accessible to undergraduate and graduate students in computer science. The problem of computing a matching that maximizes some objective function has been actively investigated for decades, driven by many high-profile industrial and medical applications. This project focuses on the design, theoretical analysis, and implementation of matching algorithms that meet the needs of modern applications, and considers generalized matching problems such as b-matching, b-edge cover, and metric matching. Classical serial algorithms that compute exactly optimum matchings are not always suited to massive graph data sets, which can contain billions of edges. Fortunately, in many applications it suffices to have nearly optimum matchings rather than exactly optimum ones. One goal of this project is to design simple and efficient matching algorithms that are both highly parallel, and produce provably good approximate solutions.This project will examine several open problems on the approximability of generalized weighted matching problems, particularly on which matching-type problems admit linear time algorithms with approximation factor arbitrarily close to one. To that end, the PIs will study how relaxing standard linear programming formulations of generalized weighted matching problems allows for more efficient algorithms. These and other algorithms will be modified to make them efficient on modern processors that support parallel computing. Two PhD students will be trained in this project. Generalized graph matching algorithms are now applied in numerical linear algebra software, for preconditioning, graph clustering, anonymizing data, and network alignment. The PIs will evaluate the performance of new and existing algorithms on these applications. The PIs will make freely available all code of matching algorithms developed under this project.Basic matching algorithms from the mid-20th century are firmly established in the canon of computer science education, but few modern matching algorithms are taught at the undergraduate level. The PIs will incorporate modules on modern matching and applications into their courses at Purdue University and the University of Michigan, and make these materials publicly available.
每年从美国医学院毕业的19,000名学生都会与他们将接受住院医师培训的医院相匹配。学生和医院都会对他们的选择进行排名,并使用一种算法来寻找匹配,为每个学生提供他们最好的可用选择。这些问题还出现在其他情况下:将器官捐赠者匹配到其身体不会排斥移植器官的接受者,根据他们的兴趣将广告匹配给网民等等。各种匹配问题和相关的边缘覆盖问题在称为图的组合对象上在计算机科学中形式化,涉及美丽的数学、复杂的算法、这些算法在现代台式计算机和超级计算机上的有效实施,以及对计算科学和工程、数据科学、网络科学等应用领域中出现的一些问题的经验评估。在这个项目中,两个PI将开发用于匹配和边缘覆盖问题的新算法和软件。并为科学、工程和工业各个领域的从业者提供实现。PIS还将在这个项目中培训两名博士生,并开发教学资源,使计算机科学本科生和研究生能够接触到这些发展。几十年来,在许多备受瞩目的工业和医疗应用的推动下,计算最大化某个目标函数的匹配问题一直被积极研究。本课题致力于满足现代应用需求的匹配算法的设计、理论分析和实现,并考虑了b-匹配、b-边覆盖、度量匹配等广义匹配问题。精确计算最佳匹配的经典串行算法并不总是适用于可能包含数十亿条边的海量图形数据集。幸运的是,在许多应用中,拥有近乎最佳的匹配就足够了,而不是精确的最佳匹配。这个项目的一个目标是设计简单高效的匹配算法,并且得到可证明的良好的近似解。本项目将研究几个关于广义加权匹配问题的可逼近性的公开问题,特别是在匹配类型的问题上允许线性时间算法的逼近因子任意接近于1的情况下。为此,PI将研究放宽广义加权匹配问题的标准线性规划公式如何允许更有效的算法。这些算法和其他算法将被修改,以使它们在支持并行计算的现代处理器上高效。两名博士生将在这个项目中接受培训。广义图匹配算法现在被应用于数值线性代数软件中,用于预处理、图聚类、数据匿名化和网络比对。PI将评估新的和现有的算法在这些应用程序上的性能。PI将免费提供在该项目下开发的所有匹配算法代码。20世纪中期的基本匹配算法牢固地建立在计算机科学教育的典范中,但很少有现代匹配算法在本科生水平上被教授。PIS将把现代匹配和应用模块纳入他们在普渡大学和密歇根大学的课程中,并将这些材料公开提供。

项目成果

期刊论文数量(51)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Near-optimal Distributed Triangle Enumeration via Expander Decompositions
通过扩展器分解进行近乎最优的分布式三角形枚举
  • DOI:
    10.1145/3446330
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Chang, Yi-Jun;Pettie, Seth;Saranurak, Thatchaphol;Zhang, Hengjie
  • 通讯作者:
    Zhang, Hengjie
Wake up and join me! An energy-efficient algorithm for maximal matching in radio networks
  • DOI:
    10.1007/s00446-022-00426-w
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Varsha Dani;Aayush Gupta;Thomas P. Hayes;Seth Pettie
  • 通讯作者:
    Varsha Dani;Aayush Gupta;Thomas P. Hayes;Seth Pettie
Fully Dynamic Connectivity in O (log n (log log n ) 2 ) Amortized Expected Time
完全动态连接,时间复杂度为 O (log n (log log n ) 2 ) 摊销预期时间
  • DOI:
    10.1137/1.9781611974782.32
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huang, Shang-En;Huang, Dawei;Kopelowitz, Tsvi;Pettie, Seth
  • 通讯作者:
    Pettie, Seth
Improved Distributed Expander Decomposition and Nearly Optimal Triangle Enumeration
改进的分布式扩展器分解和近乎最优的三角形枚举
Lower Bounds on Sparse Spanners, Emulators, and Diameter-Reducing Shortcuts
稀疏扳手、仿真器和缩径快捷方式的下限
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Seth Pettie其他文献

Randomized minimum spanning tree algorithms using exponentially fewer random bits
使用指数级更少随机位的随机最小生成树算法
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seth Pettie;V. Ramachandran
  • 通讯作者:
    V. Ramachandran
Additive spanners and (α, β)-spanners
加法扳手和 (α, β)-扳手
  • DOI:
    10.1145/1868237.1868242
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Surender Baswana;T. Kavitha;K. Mehlhorn;Seth Pettie
  • 通讯作者:
    Seth Pettie
Online Dictionary Matching with One Gap
在线词典一间隙匹配
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Amir;T. Kopelowitz;Avivit Levy;Seth Pettie;E. Porat;B. R. Shalom
  • 通讯作者:
    B. R. Shalom
An Inverse-Ackermann Type Lower Bound For Online Minimum Spanning Tree Verification*
用于在线最小生成树验证的逆阿克曼型下界*
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seth Pettie
  • 通讯作者:
    Seth Pettie
Fast algorithms for (max, min)-matrix multiplication and bottleneck shortest paths
(最大,最小)矩阵乘法和瓶颈最短路径的快速算法

Seth Pettie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Seth Pettie', 18)}}的其他基金

CCF:Small:Algorithmic Fraud Detection
CCF:Small:算法欺诈检测
  • 批准号:
    2221980
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AF: Small: Locality and Energy in Distributed Computing
AF:小:分布式计算中的局部性和能量
  • 批准号:
    1815316
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: Hardness in Polynomial Time
AF:媒介:协作研究:多项式时间内的硬度
  • 批准号:
    1514383
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
TWC: Small: Collaborative: Cost-Competitve Analysis - A New Tool for Designing Secure Systems
TWC:小型:协作:成本竞争分析 - 设计安全系统的新工具
  • 批准号:
    1318294
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AF:Small:Data Structures for Dynamic Networks
AF:小:动态网络的数据结构
  • 批准号:
    1217338
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Advanced Data Structures for Shortest Paths, Routing, and Self-Adjusting Computation
职业:最短路径、路由和自调整计算的高级数据结构
  • 批准号:
    0746673
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似海外基金

AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
  • 批准号:
    2051197
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
  • 批准号:
    2006206
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
  • 批准号:
    1940759
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AiTF: Collaborative Research: Distributed and Stochastic Algorithms for Active Matter: Theory and Practice
AiTF:协作研究:活跃物质的分布式随机算法:理论与实践
  • 批准号:
    1733812
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: A Framework of Simultaneous Acceleration and Storage Reduction on Deep Neural Networks Using Structured Matrices
AitF:协作研究:使用结构化矩阵的深度神经网络同时加速和存储减少的框架
  • 批准号:
    1854742
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AiTF: Collaborative Research: Distributed and Stochastic Algorithms for Active Matter: Theory and Practice
AiTF:协作研究:活跃物质的分布式随机算法:理论与实践
  • 批准号:
    1733680
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
  • 批准号:
    1855760
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Automated Medical Image Segmentation via Object Decomposition
AitF:协作研究:通过对象分解进行自动医学图像分割
  • 批准号:
    1733742
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
  • 批准号:
    1733796
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Algorithms and Mechanisms for the Distribution Grid
AitF:协作研究:配电网算法和机制
  • 批准号:
    1733832
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了