NRI: A Model based Approach to Distributed Adaptive Sampling of Spatio-Temporally Varying Fields
NRI:基于模型的时空变化场分布式自适应采样方法
基本信息
- 批准号:1637889
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project studies the problem of designing active sensing systems for monitoring dynamically evolving spatial fields using mobile robotic sensor networks. As a particular motivating problem, we consider fields governed by advection-diffusion equations, a model sufficiently general to cover a huge range of important phenomena: from the recent Aliso Canyon gas leak in California and the volcanic ash clouds of Eyjafjallajokull, to the temperature profile within a building. The development of a realistic open-source simulation toolbox for the active sensing problem will allow the assimilation of K-12/undergraduate/graduate students, and high school teachers in projects related to the research, and also allow a broader dissemination of the research to the general public at the annual TAMU Physics and Engineering fair while educating them about the benefits of the project, for instance, in response to a hazardous situation such as a chemical leak or an oil spill.In the current literature, statistical black-boxes (such as Gaussian Processes), which were originally developed for (quasi)-static spatial fields, are being used to model fields with structured temporal dynamics. In this process, two issues which ought to be distinct, the correctness of the model, and considerations of computational efficiency, have become entangled and the consequences can be dangerous: state-of-the-art methods may provide cheap but drastically wrong estimates, along with error bounds that are grossly over-confident when the spatial fields are temporally varying. The investigators will seek to produce adaptive estimation techniques for dynamic spatial fields that are optimal and correct. In particular, randomized model reduction techniques shall be used to attain computational tractability whilst preserving correctness. Further, the project shall seek to develop receding horizon sensor tasking strategies that can drastically outperform greedy strategies in terms of the information content of the estimated field.
本研究项目研究利用移动机器人传感器网络来设计主动传感系统来监测动态变化的空间场的问题。作为一个特殊的激励问题,我们考虑了由平流-扩散方程控制的场,这个模型足够普遍,可以涵盖一系列重要现象:从最近加州Aliso Canyon气体泄漏和Eyjafjallajokull的火山灰云,到建筑物内的温度分布。为主动传感问题开发一个现实的开源模拟工具箱将允许K-12/本科生/研究生和高中教师吸收与研究相关的项目,并允许在一年一度的TAMU物理和工程博览会上向公众更广泛地传播研究,同时教育他们关于该项目的好处,例如,应对危险情况,如化学品泄漏或石油泄漏。在当前的文献中,最初为(准)静态空间场开发的统计黑盒(如高斯过程)正被用于对具有结构化时间动态的场进行建模。在这个过程中,两个本应截然不同的问题--模型的正确性和对计算效率的考虑--已经纠缠在一起,后果可能是危险的:最先进的方法可能提供廉价但严重错误的估计,以及当空间场在时间上变化时过于自信的误差界。研究人员将寻求为动态空间场产生最优和正确的自适应估计技术。特别是,应使用随机化模型简化技术来获得计算可操纵性,同时保持正确性。此外,该项目将寻求开发滚动地平线传感器任务策略,在估计的领域的信息内容方面,这些策略可以大大超过贪婪策略。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient distributed state estimation of hidden Markov Models over unreliable networks
不可靠网络上隐马尔可夫模型的高效分布式状态估计
- DOI:10.1109/mrs.2017.8250939
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Tamjidi, Amirhossein;Oftadeh, Reza;Chakravorty, Suman;Shell, Dylan
- 通讯作者:Shell, Dylan
MT-LQG: Multi-agent planning in belief space via trajectory-optimized LQG
MT-LQG:通过轨迹优化的 LQG 在置信空间中进行多智能体规划
- DOI:10.1109/icra.2017.7989658
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Rafieisakhaei, Mohammadhussein;Chakravorty, Suman;Kumar, P. R.
- 通讯作者:Kumar, P. R.
Unifying consensus and covariance intersection for decentralized state estimation
- DOI:10.1109/iros.2016.7759044
- 发表时间:2016-10
- 期刊:
- 影响因子:0
- 作者:A. Tamjidi;S. Chakravorty;Dylan A. Shell
- 通讯作者:A. Tamjidi;S. Chakravorty;Dylan A. Shell
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suman Chakravorty其他文献
A Randomized balanced proper orthogonal decomposition technique
随机平衡适当正交分解技术
- DOI:
10.1016/j.cam.2019.112540 - 发表时间:
2020-04 - 期刊:
- 影响因子:2.4
- 作者:
Dan Yu;Suman Chakravorty - 通讯作者:
Suman Chakravorty
Decoupled Data-Based Approach for Learning to Control Nonlinear Dynamical Systems
用于学习控制非线性动力系统的基于解耦数据的方法
- DOI:
10.1109/tac.2021.3108552 - 发表时间:
2019-04 - 期刊:
- 影响因子:6.8
- 作者:
Ran Wang;Karthikeya S. Parun;i;Dan Yu;Dileep Kalathil;Suman Chakravorty - 通讯作者:
Suman Chakravorty
Unifying Consensus and Covariance Intersection for Efficient Distributed State Estimation Over Unreliable Networks
统一共识和协方差交集以实现不可靠网络上的高效分布式状态估计
- DOI:
10.1109/tro.2021.3064102 - 发表时间:
2021-10 - 期刊:
- 影响因子:7.8
- 作者:
Amirhossein Tamjidi;Reza Oftadeh;Mohamed Naveed Gul Mohamed;Dan Yu;Suman Chakravorty;Dylan Shell - 通讯作者:
Dylan Shell
A stochastic unknown input realization and filtering technique
- DOI:
10.1016/j.automatica.2015.10.013 - 发表时间:
2016-01-01 - 期刊:
- 影响因子:
- 作者:
Dan Yu;Suman Chakravorty - 通讯作者:
Suman Chakravorty
Suman Chakravorty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suman Chakravorty', 18)}}的其他基金
I-Corps: Accurate GPS-free Navigation and Localization
I-Corps:准确的无 GPS 导航和定位
- 批准号:
1740544 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RI: Small: Sampling Based Feedback Motion Planners
RI:小型:基于采样的反馈运动规划器
- 批准号:
1217991 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Sensing for Information Driven Exploration Systems (SIDES)
信息驱动探索系统 (SIDES) 传感
- 批准号:
1200642 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SGER: Adaptive Intelligent Interferometric Imaging Systems
SGER:自适应智能干涉成像系统
- 批准号:
0841334 - 财政年份:2008
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
- 批准号:81503449
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于非齐性 Makov model 建立病证结合的绝经后骨质疏松症早期风险评估模型
- 批准号:30873339
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
EAGER: Liutex-based Sub-Grid Model for Large Eddy Simulation of Turbulent Flow
EAGER:基于 Liutex 的湍流大涡模拟子网格模型
- 批准号:
2422573 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Research on Robust Multi-Person Gait Recognition Based on the Combination of Human Mesh Model and Silhouette
基于人体网格模型与剪影相结合的鲁棒多人步态识别研究
- 批准号:
24K20794 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
- 批准号:
2347294 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Efficient Large Language Model Inference Through Codesign: Adaptable Software Partitioning and FPGA-based Distributed Hardware
职业:通过协同设计进行高效的大型语言模型推理:适应性软件分区和基于 FPGA 的分布式硬件
- 批准号:
2339084 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Mathematically modelling tuberculosis: using lung scans to map infection, and a hybrid individual-based model to simulate infection and treatment
对结核病进行数学建模:使用肺部扫描来绘制感染图,并使用基于个体的混合模型来模拟感染和治疗
- 批准号:
MR/Y010124/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Fellowship
Genome analysis-based prediction model development for response to stereotactic radiosurgery in benign brain tumors
基于基因组分析的预测模型开发,用于良性脑肿瘤立体定向放射外科治疗的反应
- 批准号:
23K08495 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a physiologically based model for predicting the optimum harvest period for rice
开发基于生理的模型来预测水稻的最佳收获期
- 批准号:
23K05198 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311084 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Addressing the Challenge of Authentic Inquiry at Scale: Probing and Supporting Teaching Assistants’ Implementation of a Model-Based-Inquiry Curriculum
应对大规模真实探究的挑战:探索和支持助教——基于模型的探究课程的实施
- 批准号:
2400787 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
A Developmental Model to Understand the Process of Instructor Implementation of Evidence-Based Teaching Practices
理解教师实施循证教学实践过程的发展模型
- 批准号:
2235966 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant