I-Corps: Accurate GPS-free Navigation and Localization

I-Corps:准确的无 GPS 导航和定位

基本信息

项目摘要

The broader impact/commercial potential of this I-Corps project is to develop autonomous navigation technology that will enable systems to robustly operate in uncertain environments without a Global Positioning System (GPS). The project is a result of a confluence of astronomy, aerospace, computational science and artificial intelligence. Commercialization of this technology has the potential to revolutionize space exploration, self-driving cars, Unmanned Aerial Vehicles (UAVs) and other such systems which need accurate position estimation. A key advantage of this project's technology is enhanced cybersecurity as it does not rely on external signals for navigation. Further, this project will contribute open-source software to the scientific community. It is envisioned that development of a software toolbox that integrates with the popular ROS (Robot Operating System) library will allow researchers to simulate autonomous navigation without GPS.This I-Corps project is a result of research into the problem of Simultaneous Localization and Mapping (SLAM). In SLAM, a robot is not given prior knowledge of its environment, it must use its sensory data and actions to simultaneously build a map of its environment and position itself within its uncertain map. Competing methods in this area exhibit positioning errors which may be unsuitable for long-term navigation. The work developed here shows that by fusing orientation sensing with short-range sensing, the system attain a simplification of the underlying optimization problem. This allows fast and globally optimal solutions. In this approach, a vehicle uses a camera to track celestial bodies in the sky which allows the vehicle to estimate its orientation in space, this information is fused with short-range sensors such as lasers and cameras which track features in vicinity of the vehicle. Using the proposed approach, a system can achieve 100x improvement in position error over existing methods.
这个i-Corps项目的更广泛的影响/商业潜力是开发自主导航技术,使系统能够在没有全球定位系统(GPS)的情况下在不确定的环境中稳健运行。该项目是天文学、航空航天、计算科学和人工智能相结合的结果。这项技术的商业化有可能给太空探索、自动驾驶汽车、无人机(UAV)和其他需要准确位置估计的此类系统带来革命性的变化。该项目技术的一个关键优势是增强了网络安全,因为它不依赖外部信号进行导航。此外,该项目将为科学界贡献开源软件。据设想,开发一个与流行的ROS(机器人操作系统)库集成的软件工具箱将允许研究人员在没有GPS的情况下模拟自主导航。I-Corps项目是对同步定位和地图绘制(SLAM)问题的研究结果。在SLAM中,机器人没有获得关于其环境的先验知识,它必须使用其感官数据和动作来同时建立其环境的地图,并在其不确定的地图中定位自己。这一领域的竞争方法显示出定位误差,这可能不适合长期导航。这里的工作表明,通过融合方向传感和短程传感,该系统实现了基本优化问题的简化。这就实现了快速且全局最优的解决方案。在这种方法中,飞行器使用相机来跟踪天空中的天体,从而使飞行器能够估计其在空间中的方向,这些信息与跟踪飞行器附近特征的激光和相机等短程传感器融合。使用该方法,系统的位置误差比现有方法提高了100倍。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Suman Chakravorty其他文献

A Randomized balanced proper orthogonal decomposition technique
随机平衡适当正交分解技术
Decoupled Data-Based Approach for Learning to Control Nonlinear Dynamical Systems
用于学习控制非线性动力系统的基于解耦数据的方法
  • DOI:
    10.1109/tac.2021.3108552
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Ran Wang;Karthikeya S. Parun;i;Dan Yu;Dileep Kalathil;Suman Chakravorty
  • 通讯作者:
    Suman Chakravorty
Unifying Consensus and Covariance Intersection for Efficient Distributed State Estimation Over Unreliable Networks
统一共识和协方差交集以实现不可靠网络上的高效分布式状态估计
  • DOI:
    10.1109/tro.2021.3064102
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Amirhossein Tamjidi;Reza Oftadeh;Mohamed Naveed Gul Mohamed;Dan Yu;Suman Chakravorty;Dylan Shell
  • 通讯作者:
    Dylan Shell
A stochastic unknown input realization and filtering technique
  • DOI:
    10.1016/j.automatica.2015.10.013
  • 发表时间:
    2016-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dan Yu;Suman Chakravorty
  • 通讯作者:
    Suman Chakravorty

Suman Chakravorty的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Suman Chakravorty', 18)}}的其他基金

NRI: A Model based Approach to Distributed Adaptive Sampling of Spatio-Temporally Varying Fields
NRI:基于模型的时空变化场分布式自适应采样方法
  • 批准号:
    1637889
  • 财政年份:
    2016
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
RI: Small: Sampling Based Feedback Motion Planners
RI:小型:基于采样的反馈运动规划器
  • 批准号:
    1217991
  • 财政年份:
    2012
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Sensing for Information Driven Exploration Systems (SIDES)
信息驱动探索系统 (SIDES) 传感
  • 批准号:
    1200642
  • 财政年份:
    2012
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
SGER: Adaptive Intelligent Interferometric Imaging Systems
SGER:自适应智能干涉成像系统
  • 批准号:
    0841334
  • 财政年份:
    2008
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似海外基金

A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
  • 批准号:
    24K07389
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Adapting Position-Based Dynamics as a Biophysically Accurate and Efficient Modeling Framework for Dynamic Cell Shapes
采用基于位置的动力学作为动态细胞形状的生物物理准确且高效的建模框架
  • 批准号:
    24K16962
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The challenge of scaling methane fluxes in mangrove and mountain forests for an accurate methane budget
缩放红树林和山地森林甲烷通量以获得准确的甲烷预算的挑战
  • 批准号:
    24K01797
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
"Mimicking Human Head Sound Responses": Towards an Anatomically Accurate Head Prototype for Bone Conduction Crosstalk Cancellation Analysis with Humans
“模仿人类头部声音反应”:构建解剖学上准确的头部原型,用于人类骨传导串扰消除分析
  • 批准号:
    24K20786
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
  • 批准号:
    BB/Y513763/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
Developing an accurate non-Newtonian surface rheology model
开发精确的非牛顿表面流变模型
  • 批准号:
    EP/Y031644/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
Accurate analysis of PTM enzymes with an mRNA display/deep learning platform
利用 mRNA 显示/深度学习平台准确分析 PTM 酶
  • 批准号:
    23K23485
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Framework for Fast, Accurate, and Explainable Computerized Adaptive Language Test
快速、准确且可解释的计算机化自适应语言测试框架
  • 批准号:
    24K20903
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CRISPR-based biosensors for the ultra-accurate detection of disease-related single nucleotide polymorphisms (SNPs)
职业:基于 CRISPR 的生物传感器,用于超准确检测与疾病相关的单核苷酸多态性 (SNP)
  • 批准号:
    2421137
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
CAREER: CRISPR-based biosensors for the ultra-accurate detection of disease-related single nucleotide polymorphisms (SNPs)
职业:基于 CRISPR 的生物传感器,用于超准确检测与疾病相关的单核苷酸多态性 (SNP)
  • 批准号:
    2339868
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了