SGER: Adaptive Intelligent Interferometric Imaging Systems
SGER:自适应智能干涉成像系统
基本信息
- 批准号:0841334
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-10-01 至 2009-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractProposal Number: 0841334Proposal Title: SGER: Adaptive Intelligent Interferometric Imaging SystemPI Name: Suman ChakravortyPI Institution: Texas A&M University - Texas Engineering Experiment StationObjective: The PI will develop new technology to improve our ability (and reduce the cost) to perform high resolution imaging of distant astronomical targets such as exo-solar systems and protoplanetary disks. These high resolution imaging tasks will be addressed by using multi-spacecraft interferometric imaging systems (MSIIS). Such systems synthesize a large optical aperture by interfering the light collected by smaller aperture telescopes carried by the component spacecraft of such systems. The state of the art for the maneuver design of such systems attempts to uniformly fill the Fourier/u-v plane of the image. However, such maneuvers lead to an exceedingly wasteful expenditure of resources since the Fourier plane of any image is quite sparse. The new methodology proposed here is intended to reduce that waste, and thereby substantially reduce the cost of achieving ambitious goals in astronomical imaging. Intellectual merit of proposal: The intelligent imagining methodology is formulated as a stochastic adaptive control problem. It consists of: (a) intensity correlation interferometry based on the Hanbury-Brown-Twiss (HB-T) quantum optic effect; (b) forming a constant probabilistic estimate of the image using noisy interferometric measurements made by the component spacecraft; and (c) utilizing this probablilistic estimate of the image to guide the motion of the component spacecraft such that most of the resources of the system are utilized in exploring the "information rich" areas of the u-v plane. Intensity correlation interferometry (ICI) based on the HB-T effect results in relaxation of the precision control requirements by several orders of magnitude. The image estimation problem will be addressed by a new methodology grounded in frequentist statistics. The motion planning of the spacecraft is proposed to be solved using approximate dynamic programming (ADP) utilizing the probabilistic estimates of the image content from the estimation algorithm. Broad impact of proposal: This new technology should permit the development of high resolution imaging systems with effective aperture sizes that are heretofore unheard of. For example, it may make it far more feasible and affordable for us to detect the spectral signature of plant life in earth-sized planets within 100 to 100 light years of earth. The recruitment of graduate, undergraduate and high school students to participate in the research performed at the ground-based observatory in TAMU as part of this project will literally opn new worlds for these students. Among these students will be underrepresented minority students who will be actively recruited from Bryan High School (BHS).
摘要提案编号:0841334提案标题:SGER:自适应智能干涉成像系统PI姓名:Suman ChakravortyPI机构:得克萨斯A& M大学-得克萨斯工程实验站目标:PI将开发新技术,以提高我们的能力(并降低成本),以执行遥远的天文目标,如太阳系和原行星盘的高分辨率成像。这些高分辨率成像任务将通过使用多航天器干涉成像系统来完成。这种系统通过干涉由这种系统的组成航天器携带的较小孔径望远镜收集的光来合成大的光学孔径。这种系统的机动设计的现有技术试图均匀地填充图像的傅立叶/u-v平面。然而,这样的机动导致资源的极其浪费的支出,因为任何图像的傅立叶平面是相当稀疏的。这里提出的新方法旨在减少这种浪费,从而大大降低实现天文成像宏伟目标的成本。建议的智力优点:智能想象方法被制定为一个随机自适应控制问题。它包括:(a)基于Hanbury-Brown-Twiss(HB-T)量子光学效应的强度相关干涉测量法;(B)使用由组成航天器进行的噪声干涉测量形成图像的恒定概率估计;以及(c)利用图像的这种概率估计来引导组成航天器的运动,使得系统的大部分资源被用于探索“信息丰富”的区域。U-V平面的面积。基于HB-T效应的强度相关干涉术(ICI)可以将精度控制要求放宽几个数量级。图像估计问题将解决一个新的方法,在频率统计接地。航天器的运动规划建议使用近似动态规划(ADP),利用估计算法的图像内容的概率估计来解决。提案的广泛影响:这项新技术应允许开发具有迄今为止闻所未闻的有效孔径尺寸的高分辨率成像系统。例如,它可能使我们在距离地球100到100光年的地球大小的行星上探测植物生命的光谱特征变得更加可行和负担得起。作为该项目的一部分,招募研究生、本科生和高中生参加在TAMU地面观测站进行的研究,将为这些学生开辟新的世界。在这些学生中,少数民族学生的代表性不足,他们将积极从布赖恩高中(BHS)招募。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suman Chakravorty其他文献
A Randomized balanced proper orthogonal decomposition technique
随机平衡适当正交分解技术
- DOI:
10.1016/j.cam.2019.112540 - 发表时间:
2020-04 - 期刊:
- 影响因子:2.4
- 作者:
Dan Yu;Suman Chakravorty - 通讯作者:
Suman Chakravorty
Decoupled Data-Based Approach for Learning to Control Nonlinear Dynamical Systems
用于学习控制非线性动力系统的基于解耦数据的方法
- DOI:
10.1109/tac.2021.3108552 - 发表时间:
2019-04 - 期刊:
- 影响因子:6.8
- 作者:
Ran Wang;Karthikeya S. Parun;i;Dan Yu;Dileep Kalathil;Suman Chakravorty - 通讯作者:
Suman Chakravorty
Unifying Consensus and Covariance Intersection for Efficient Distributed State Estimation Over Unreliable Networks
统一共识和协方差交集以实现不可靠网络上的高效分布式状态估计
- DOI:
10.1109/tro.2021.3064102 - 发表时间:
2021-10 - 期刊:
- 影响因子:7.8
- 作者:
Amirhossein Tamjidi;Reza Oftadeh;Mohamed Naveed Gul Mohamed;Dan Yu;Suman Chakravorty;Dylan Shell - 通讯作者:
Dylan Shell
A stochastic unknown input realization and filtering technique
- DOI:
10.1016/j.automatica.2015.10.013 - 发表时间:
2016-01-01 - 期刊:
- 影响因子:
- 作者:
Dan Yu;Suman Chakravorty - 通讯作者:
Suman Chakravorty
Suman Chakravorty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suman Chakravorty', 18)}}的其他基金
I-Corps: Accurate GPS-free Navigation and Localization
I-Corps:准确的无 GPS 导航和定位
- 批准号:
1740544 - 财政年份:2017
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
NRI: A Model based Approach to Distributed Adaptive Sampling of Spatio-Temporally Varying Fields
NRI:基于模型的时空变化场分布式自适应采样方法
- 批准号:
1637889 - 财政年份:2016
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
RI: Small: Sampling Based Feedback Motion Planners
RI:小型:基于采样的反馈运动规划器
- 批准号:
1217991 - 财政年份:2012
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Sensing for Information Driven Exploration Systems (SIDES)
信息驱动探索系统 (SIDES) 传感
- 批准号:
1200642 - 财政年份:2012
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Towards Fundamentals of Adaptive, Collaborative and Intelligent Radar Sensing and Perception
职业:探索自适应、协作和智能雷达传感和感知的基础知识
- 批准号:
2340029 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
- 批准号:
2338555 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Intelligent, Adaptive Program with Just-in-time Feedback for Preservice Teachers
智能、自适应计划,为职前教师提供及时反馈
- 批准号:
2234015 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Intelligent Science Stations: Developing Adaptive Mixed-Reality Technology to Enhance Inquiry-based STEM Learning in Schools
智能科学站:开发自适应混合现实技术以增强学校探究式 STEM 学习
- 批准号:
2300734 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Adaptive Autonomous Architectural Framework for Intelligent Autonomous Subsystems
智能自治子系统的自适应自治架构框架
- 批准号:
RGPIN-2019-06136 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Discovery Grants Program - Individual
CAREER: MINDWATCH: Multimodal Intelligent Noninvasive brain state Decoder for Wearable AdapTive Closed-loop arcHitectures
职业:MINDWATCH:用于可穿戴自适应闭环结构的多模态智能无创大脑状态解码器
- 批准号:
2226123 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
ERI: Towards Intelligent, Cost-Efficient, and Adaptive Techniques to Enable Biomedical Hardware-Assisted Cybersecurity
ERI:采用智能、经济高效和自适应的技术来实现生物医学硬件辅助的网络安全
- 批准号:
2139034 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks for Intelligent Adaptive Experimentation: Enhancing and Tailoring Digital Education
合作研究:智能自适应实验框架:增强和定制数字教育
- 批准号:
2209819 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Adaptive Intelligent Wireless Networking with Advanced Communication and Machine Learning Techniques
具有先进通信和机器学习技术的自适应智能无线网络
- 批准号:
571576-2021 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Alliance Grants
Intelligent Adaptive Autonomous Systems: Essential Technologies and Applications
智能自适应自治系统:基本技术和应用
- 批准号:
RGPIN-2022-04594 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Discovery Grants Program - Individual